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Abstract. In this paper, a class of complementarity problem and three classes

of variational inequalities in real Banach spaces are introduced, and the equiv-
alence among them are established under certain conditions. Several coerciv-

ity conditions are introduced for the existence of solutions of the generalized

complementarity problem. Our results can be viewed as extension and gen-
eralization of the recent paper [N. J. Huang, J. Li, D. O’Regan, Generalized

f-complementarity problems in Banach spaces, vol. 142, pg. 3828-3840, 2008].

1. Introduction and Preliminaries

The complementarity problem (for short, CP) was introduced first by Cottle and
Dantzig [6] in 1968. It is well known that (CP) is closely related to optimization
problems, variational inequalities, equilibrium problems, fixed point theory, oper-
ations research, game theory, economics and finance, as well as applied sciences.
Since 1960s, (CP) has been studied extensively by many authors (see, for instance,
[1]-[6], [8]-[16] and the references therein).

In this paper let X be a real Banach space with dual X∗, and K a nonempty,
closed and convex cone of X. Denote 〈t, x〉 value of the linear continuous function
t ∈ X∗ at x. In 2001, Yin, Xu and Zhang [19] introduced and studied a class of
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f-complementarity problems (for short, f-CP), which consists of finding x ∈ K such
that

〈Tx, x〉+ f(x) = 0 and 〈Tx, y〉+ f(y) ≥ 0, ∀y ∈ K.
The (f-CP) has been extended to the vector f-complementarity problem by Fang

and Huang [9], the vector f-implicit complementarity problem by Li and Huang [15]
and (the latest extension) the generalized f-complementarity problem (for short, Gf-
CP) by Huang, Li and O’Regan [12] which consists of finding x ∈ K and t ∈ F (x)
such that

〈t, x〉+ f(x) = 0 and 〈t, y〉+ f(y) ≥ 0, ∀y ∈ K,
where F : K → 2X

∗\{∅}.
In this paper we consider the following problem which consists of finding x ∈ K

and t ∈ F (x) such that

(GCP) G(t, x) = 0 and G(t, y) ≥ 0, ∀y ∈ K,
where G : X∗×K → R. We call this problem generalized complementarity problem
(GCP) and denote it by Sc the solution set of (GCP).

Remark that if we define G(t, x) = 〈t, x〉+ f(x), where f : K → (−∞,∞), then
(GCP) reduces to the (Gf-CP).

We also study the following three classes of variational inequalities:

(GV I)1 Find x ∈ K such that

∃ t ∈ F (x) : G(t, y) ≥ G(t, x), ∀ y ∈ K;

(GV I)2 Find x ∈ K such that

∀ y ∈ K, ∃ t ∈ F (x) : G(t, y) ≥ G(t, x);

(GV I)3 Find x ∈ K such that

∀ y ∈ K, ∀ t ∈ F (y) : G(t, y) ≥ G(t, x).

We denote the solution set of (GV I)1, (GV I)2 and (GV I)3 by S1, S2 and S3,
respectively.

2. EQUIVALENCE among (G-CP) (GV I)1, (GV I)2 and (GV I)3

In this section, we investigate the equivalence among (G-CP) (GV I)1, (GV I)2
and (GV I)3. First we recall some definitions. Let G : X∗ ×K → R and t ∈ X∗.
The mapping x→ G(t, x) is said to be

• positively homogeneous, if for all α > 0 and x ∈ K,

G(t, αx) = αG(t, x);

• convex, if for all pairs (x, y) ∈ K ×K and all λ ∈ [0, 1],

G(t, λx+ (1− λ)y) ≤ λG(t, x) + (1− λ)G(t, y);

• sublinear, if it is convex and homogeneous;

• subadditive, if for all pairs (x, y) ∈ K ×K,

G(t, x+ y) ≤ G(t, x) +G(t, y);
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• lower semicontinuous (l.s.c.), if for every x ∈ K,

lim inf
y→x

G(t, y) ≥ G(t, x).

Theorem 2.1. Let F : K → 2X
∗\{∅} and G : X∗ ×K → R. Then the following

statements are valid:
(i) Sc ⊆ S1.

(ii) If G(x, .) is positively homogeneous, then S1 ⊆ Sc.

Proof. (i) is trivial.

(ii) Let x ∈ S1. Then x ∈ K and

∃t ∈ F (x) : G(t, y) ≥ G(t, x), ∀y ∈ K. (2.1)

By letting y = 2x and y = x
2 ,respectively, in 2.1 ( note that K is convex cone and

the mapping x→ G(t, x) is positively homogeneous) we get

G(t, x) ≥ 0 and G(t, x) ≤ 0,

and hence

G(t, x) = 0. (2.2)
Now (2.1) and (2.2) imply that

G(t, x) = 0 and G(t, y) ≥ 0.

Hence x ∈ Sc. The proof is complete.
�

Definition 2.2. Let F : K → 2X
∗\{∅} and G : X∗ ×K → R. The F is said to be

• upper semi-continuous (u.s.c) at x ∈ K if, for every open set V containing
F (x), there exists an open set U containing x such that F (U) ⊆ V , where
X∗ is equipped with the w∗ -topology;
• upper hemi-continuous ( u.h.c) if the restriction of F on straight lines is
upper semi-continuous;
• G-monotone if, for every x, y ∈ K
G(tx, x) +G(ty, y) ≥ G(tx, y) +G(ty, x) ∀tx ∈ F (x),∀ty ∈ F (y);

• strictly G-monotone if, for every x, y ∈ K
G(tx, x) +G(ty, y) > G(tx, y) +G(ty, x) ∀tx ∈ F (x),∀ty ∈ F (y);

Lemma 2.3. ([18]) Let A be a nonempty convex set in a vector space and let B
be a nonempty compact convex set in a Hausdorff topological vector space. Suppose
that g is a real valued function on A × B such that for each a ∈ A, g(a, .) is l.s.c
and convex on B, and for each fixed b ∈ B, g(., b) is concave on A. Then

min
b∈B

sup
a∈A

g(a, b) = sup
a∈A

min
b∈B

g(a, b).

Theorem 2.4. Let F : K → 2X
∗\{∅} and G : X∗ ×K → R. Then the following

hold:
(i) S1 ⊆ S2.

(ii) If F is G-monotone, then S2 ⊆ S3.
(iii) If F is u.h.c, for each fixed t ∈ X∗, x → G(t, x) is convex, and for each

fixed x ∈ K, t→ G(t, x) is u.s.c, then S3 ⊆ S2.
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(iv) If F has w∗-compact and convex values, for each fixed x ∈ K, t→ G(t, x)
is concave, l.s.c, and for each fixed t ∈ X∗, x → G(t, x) is convex, then
S1 = S2.

Proof. (i) It is trivial.
(ii) Let x ∈ S2. Then

∀y ∈ K, ∃t ∈ F (x) : G(t, y) ≥ G(t, x). (2.3)

Since F is G-monotone, for every y ∈ K and t ∈ F (y), we have

G(t, y) +G(t, x) ≥ G(t, x) +G(t, y). (2.4)

It follows from (2.3) and (2.4) that

G(t, y)−G(t, x) ≥ G(t, y)−G(t, x) ≥ 0 ∀y ∈ K, ∀t ∈ F (y),

and so x ∈ S3.
(iii) Suppose that the conclusion is not true. Then there exists x ∈ K such that
x ∈ S3 and x 6∈ S2. It follows from x 6∈ S2, that there exists y ∈ K for which,

G(t, y) < G(t, x), ∀t ∈ F (x).

Hence, setting xλ = λy + (1− λ)x and taking λ close to 0, we have

G(tλ, y) < G(t, x) ∀tλ ∈ F (xλ), (2.5)

( note {t ∈ X∗ : G(t, y) < G(t, x)} is a w∗-open neighborhood of F (x) and F is
u.h.c). From the convexity, for each fixed t ∈ X∗, the mapping x→ G(t, x) gives

G(tλ, xλ) ≤ λG(tλ, y) + (1− λ)G(tλ, x). (2.6)
Now (2.5) and (2.6) imply that

G(tλ, x) < G(t, x), ∀tλ ∈ F (xλ),

which contradicts x ∈ S3. Thus, x ∈ S2 and (iii) is true.
(iv) From conclusion (i), it suffices to show that S2 ⊆ S1. Let x ∈ S2. Then

∀y ∈ K, ∃t ∈ F (x) : G(t, y) ≥ G(t, x). (2.7)

Define g : K × F (x)→ R by

g(a, b) = G(b, x)−G(b, a)

One can easily see that g satisfies all assumptions of Lemma 2.3. Hence it follows
from Lemma 2.3 that

min
b∈F (x)

sup
a∈K

(g(a, b) = G(b, x)−G(b, a)) = sup
a∈K

min
b∈F (x)

g(a, b) ≤ 0, (2.8)

(note (2.7) guarantees the inequality in (2.8)). Thus,

∃t ∈ F (x) : sup
a∈K

g(a, t) ≤ 0,

and so

G(t, x) ≤ G(t, y), ∀y ∈ K.
Therefore x ∈ S1. This completes the proof. �

Theorem 2.5. Let G : X∗ ×K → R such that G(a, .) is sublinear. Assume that
F : K → 2X

∗\{∅} is G-monotone, u.h.c., and has w∗-compact convex values. Then
(i) Sc = S1 = S2 = S3.
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(ii) If F is strictly G-monotone and Si 6= ∅(i = 1, 2, 3), then Sc consists of one
point.

Proof. Conclusion (i) follows directly from Theorem 2.4.
(ii) It is sufficient, by (i), to show that S2 consists of one point. Assume that F
is strictly G-monotone and S2 6= ∅. Let x1 and x2 solve (GV I)2. Then, by (i),
x1, x2 ∈ S1 and so

∃ t1 ∈ F (x1) : G(t1, x2) ≥ G(t1, x1), (2.9)

and
∃ t2 ∈ F (x2) : G(t2, x1) ≥ G(t2, x2). (2.10)

If x1 6= x2, then the strict G-monotonicity of F implies that

G(t1, x1) +G(t2, x2) > G(t1, x2) +G(t2, x1). (2.11)
Now from (2.9) and (2.11) we get

G(t2, x2) > G(t2, x1),

which contradicts (2.10). Hence x1 = x2, and so S2 consists of one point. This
completes the proof. �

3. Coercivity Conditions for (GCP)

Denote by K the set of all weakly compact convex subset of K. We consider the
following three classes of coercivity conditions:

(C1) ∃E ∈ K,∀x ∈ K\E,∀t ∈ F (x),∃y ∈ E : G(t, y) < G(t, x);

(C2) ∃E ∈ K,∀x ∈ K\E,∃y ∈ E,∀t ∈ F (x) : G(t, y) < G(t, x);

(C3) ∃E ∈ K,∀x ∈ K\E,∃y ∈ E,∃t ∈ F (y) : G(t, y) < G(t, x).

Theorem 3.1. Let F : K → 2X
∗\{∅} and G : X∗ ×K → R. Then the following

statements hold:
(i) Condition (C1) (resp., (C2) and (C3)) implies that S1 (resp., S2 and S3)

is contained in the weakly compact set E.
(ii) Condition (C2) implies (C1).
(iii) If F has convex values, for each fixed t ∈ X∗, x → G(t, x) is convex l.s.c.

and for each fixed x ∈ K t→ G(t, x) is concave, then condition (C1) implies
(C2).

(iv) If F is G-monotone, then condition (C3) implies (C2).

Proof. Statements (i), (ii) and (iv) are obvious. It suffices to show that conclusion
(iii) holds. Assume that condition (C1) holds. Then

∃E ∈ K,∀x ∈ K\E,∀t ∈ F (x),∃y ∈ E : G(t, y) < G(t, x).

Assume F has convex values and G(t, .) is convex and l.s.c. (w.l.s.c). As the proof
in (iv) of Theorem 2.4, for any given x ∈ K\E, define h : F (x)× E → R by

h(a, b) = G(a, b)−G(a, x).

It is easy to see that h satisfies all the assumptions of Lemma 2.3. Hence Lemma
2.3 implies that

min
b∈E

sup
a∈F (x)

h(a, b) = sup
a∈F (x)

min
b∈E

h(a, b) < 0
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and so
∃y ∈ E : sup

a∈F (x)

h(a, y) < 0.

Therefore
G(t, y) < G(t, x), ∀t ∈ F (x),

which implies that condition (C2) holds. This completes the proof. �

Let P be a nonempty subset of a topological vector space Y . A set-valued mapping
G : P → 2Y is called a KKM -mapping if, for every finite subset {y1, y2, ..., yk} of
P ,

co{y1, y2, ..., yk} ⊆
k⋃
i=1

G(yi).

Lemma 3.2. ( [8]) Let P a nonempty subset of a Hausdorff topological vector space
Y . Let G : P → 2Y be a KKM -mapping such that, for any y ∈ Y , G(y) is closed
and, for some y∗ ∈ P, G(y∗) is compact . Then⋂

y∈P
G(y) 6= ∅.

Theorem 3.3. Let G : X∗ × K → R and F : K → 2X
∗\{∅} be u.h.c., and G-

monotone. Let, for each fixed t ∈ X∗, the mapping x → G(t, x) be a convex and
l.s.c. If condition C2 holds, then S2 is nonempty.

Proof. Suppose that condition C2 holds, i.e.,

∃E ∈ K,∀x ∈ K\E,∃y ∈ E,∀t ∈ F (x) : G(t, y) < G(t, x).

Define H0 : K → 2E by

H0(y) = {x ∈ E : G(t, y) ≥ G(t, x),∀t ∈ F (y)} ∀y ∈ K.
It is clear that

⋂
y∈K H0(y) ⊆ S3, and from Theorem 2.5 one has

⋂
y∈K H0(y) ⊆

S3 = S2. We now show that
⋂
y∈K H0(y) 6= ∅. Since the mapping x → G(t, x) is

convex and l.s.c, it is easy to show that H0(y) is weakly closed, for each y ∈ K,
and so

⋂
y∈K H0(y) is weakly closed. Hence, since E is w-compact, H0(y) and⋂

y∈K H0(y) are compact. Thus, it suffices to prove that the family {H0(y)}y∈K
has the finite intersection property. Let {y1, y2, ..., yk} be any finite subset of K,
and set M = co(E ∪{y1, y2, ..., yk}), where co denotes the closed convex hull. Then
M is nonempty, w-compact and convex. Define H : M → 2M by

H(y) = {x ∈M : G(t, y) ≥ G(t, x),∀t ∈ F (y)}, ∀y ∈M.

Clearly y ∈ H(y), and the convexity of the mapping x → G(t, x) and l.s.c, re-
spectively, imply that H(y) is convex and closed, respectively. Since M is weakly
compact, so is H(y). Next, we prove that H is a KKM -mapping. Suppose to the
contrary that there exist a finite subset {u1, ..., un} of M and λi ≥ 0, i = 1, 2, ..., n
with

∑n
i=1 λi = 1, such that

u =
n∑
i=1

λiui 6∈
n⋃
j=1

H(uj).

Then, for each i = 1, 2, ..., n, there exists ti ∈ F (ui) such that

G(ti, ui) < G(ti, u).
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Since F is G-monotone, we have

G(ti, u) +G(t, ui) ≤ G(ti, ui) +G(t, u),

and so
G(t, ui) ≤ G(t, u).

From the convexity of the mapping x→ G(t, x), we have

0 = G(t, u)−G(t, u) = G(t,
n∑
i=1

λiui)−G(t, u) ≤

n∑
i=1

λi(G(t, ui)−G(t, u)) < 0,

which is a contradiction. Hence H is a KKM -mapping. Therefore H satisfies all
the assumptions of Lemma 3.2 and hence

⋂
y∈M H(y) 6= ∅. So

∃ x ∈M ∀ y ∈M, ∀ t ∈ F (y) : G(t, y) ≥ G(t, x).

Hence x is a solution of (GV I)3 in M. From Theorem 2.5 (i), we get that x is a
solution of (GV I)2 in M and so

∀ y ∈M, ∃ t ∈ F (x) : G(t, y) ≥ G(t, x).

Since condition C2 holds, one has x ∈ E. Moreover, x ∈ H0(yj), for j = 1, 2, ..., k,
which implies that {H0(y)}y∈K has the finite intersection property. This completes
the proof. �

Theorem 3.4. Let G : X∗×K → R and F : K → 2X
∗\{∅} is G-monotone, u.h.c.,

and has w∗ compact convex values. Let G(t, .) be sublinear and l.s.c. If each of
conditions (C1), (C2) and (C3) holds, then Sc is nonempty and bounded.

Proof. The conclusion follows directly from Theorem 2.5 and Theorem 3.3. �
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