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Abstract. We apply term algebraic graphs for an infinite family of graphs for

which the vertex set and the neighbourhood of each vertex are quasiprojective
varieties over the commutative ring K. For each integral domain K with unity

of characteristic 6= 2 and integral m ≥ 2 we construct an edge transitive graph

Γm(K) of girth ≥ m and diameter bounded by the constant independent on
K. In particular, for each m we have a family of algebraic small world graphs

Γ(m, Fps ) , s = 1, 2, . . . over Fp, where p is prime, of girth ≥ m.

1. Introduction

The missing definitions of graph-theoretical concepts which appear in this paper
can be found in [4]. All graphs (finite or infinite) we consider are simple, i.e.
indirected without loops and multiple edges. Let V (Γ) denotes the set of vertices
of the graph Γ. A pass in Γ is called simple if all its vertices are distinct. When
it is convenient, we shall identify Γ with the corresponding antireflexive symmetric
binary relation on V (Γ). The length of a pass is the number of its edges. The
diameter of the graph is the maximal length of the shortest pass between two
vertices. The girth of a graph Γ is the length of the shortest cycle in Γ.

We shall use term the family of algebraic graphs for the family of graphs Γ(K),
where K belongs to some infinite class F of commutative rings, such that the
neighbourhood of each vertex of Γ(K) and the vertex set itself are quasiprojective
varieties over K of dimension ≥ 1 (see [1]).

Such a family can be treated as special Turing machine with the internal and
external alphabet K.

Double cosets graphs corresponding to PwP ′, where P and P ′ are maximal
parabolic subgroups of simple group G(K) of Lie type defined over the field K are
examples of algebraic edge-transitive graphs of finite diameter (see [1] or [6]). But
the girth of them is bounded by 16 (case of generalised octagon defined over the
field).

Theorem 1. For each integer d, d > 2 there is an infinite family of edge-transitive
algebraic graphs Γd(K), where K is an integrity ring with unity of characteristic 6=
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2, such that g(Γ(K)) ≥ d and diameter diam(Γd(K)) is bounded by some constant,
independent from K.

The statement proven by explicit construction of bipartite graphs Γn(K) with
point set and line set of kind Kn such that neighbourhood of each vertex is isomor-
phic to K.

The diameter of a k-regular graph (or graph with the average degree k) of order v
is at least logk−1(v) and it is known that the random k-regular graph has diameter
close to this lower bound. In the case of family of small world graphs the diameter
is O(logk−1(v)). The girth of the graph is the smallest length of it is cycle. Most
known explicit constructions of infinite families of regular small world graphs are
of girth 4 (see, for instance, [5]).

Corollary 2. For each pair (k ≥ 3, g ≥ 3) there is a regular small world graph of
degree ≥ k and girth ≥ g with bounded diameter.

The explicit construction construction of graph Γd(K) are connected with studies
of infinite families of graphs of large girth in the sense of N. Biggs [2] i.e. graphs
Gi of degree li and unbounded girth gi such that

gi ≥ γ logli−1(vi) (1.1)
As it follows from Even Circuit Theorem by Erdø s’ γ ≤ 2, but no family has

been found for which γ = 2. Bigger γ’s correspond to the larger girth.
The first explicit examples of families with large girth were given by Margulis

[13], [14], [15] with for some infinite families with arbitrary large valency. The
constructions were Cayley graphs Xp,q of group SL2(Zq) with respect to special
sets of q+1 generators, p and q are primes congruent to 1 mod4. Then independently
Margulis and Lubotsky, Phillips, and Sarnak [12] proved that for each p the constant
γ for graphs Xp,q with fixed p is ≥ 4/3 . In [3] Biggs and Boshier showed that this
γ is asymptotically 4/3 .

The family of Xp,q is not a family of algebraic graphs because the neighbourhood
of each vertex is not an algebraic variety over Fq. For each p, graphs Xp,q, where q
is running via appropriate primes, form a family of small world graph of unbounded
diameter.

The fist family of connected algebraic graphs with over Fq of large girth and
arbitrarily large degree had been constructed in [9]. These graphs CD(k, q), k is an
integer ≥ 2 and q is od prime power had been constructed as connected component
of graphs D(k, q) defined earlier (see [7], [8]). For each q graphs CD(k, q), k ≥ 2
form a family of large girth with γ = 4/3logq−1q.

Some new examples of algebraic graphs of large girth and arbitrary large degree
the reader can find in [22].

Graphs D(n, q) had been defined by diophantine equations, they have natural
generalisations D(n,K) defined over general commutative ring (see section 2 of the
paper). In [22] the following statement had been proven.

Proposition 3. For each integral domain K the girth of the graph D(n, k) is
≥ n+ 5.

We prove that for each commutative ring with unity of characteristic 6= 2 the
connected components of D(n,K) are isomorphic algebraic graphs over K. So the
girth of the connected component is g(D(n,K)) We establish the upper bound for
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the diameter of the connected components of D(n,K) independent on the ring K. It
means that for each d we can chose the graph Γd(K) among connected components
of graphs D(n,K), n = 2, 3, . . . .

The description of the connected components D(n, Fq), q is odd number had
been obtained in [10], but the question on the evaluation of diameter was open.

The technique of studies the connected components of CD(n,K) is group theo-
retical. In section 2 we define the automorphism group U(n,K) acting edge tran-
sitive on the vertex set of graphs D(n,K). We introduce imprimitivity blocks
CD(k,K) = Ct(K) of transformation group (U(n,K), D(n,K)) such that induced
subgraph is an bipartite algebraic graph with partition sets isomorphic to Kt, where
t = [4/3n] + 1 for n = 0, 2, 3 mod 4 and t = [3/4n] + 2 for n = 1 mod 4. We show
that the graph Ct(K) for the ring K with unity of odd characteristic is the con-
nected component of D(n,K). Let D(K), CD(K) and U(K) are natural projective
limits of graphs D(n,K), CD(n,K) and groups U(n,K) when n → ∞. As it was
established in [22] for the case of integral domain K the girth of D(n,K) ≥ n+5. It
means that if K is an integral domain with unity of odd characteristic then CD(K)
is a tree and U(K) is isomorphic to the free product of two copies of additive group
K+ for the ring K.

In section 3 we establish the upper bound for the diameter of the graph Ct(K),
where K is the ring with unity of odd characteristic. As a corollary we get that the
following statement

Proposition 4. The family Ct(K), where t is fixed and K belongs to the class of
finite rings with unity of odd characteristic is the family of algebraic small world
graphs of bounded diameter.

The combination of small diameter and large girth makes graphs Ct(K) useful
in cryptographical applications (see [19], [20], [21], [22]).

2. Transformation groups of incidence structures defined over
commutative rings

The incidence structure (P,L, I) (or bipartite graph) is a triple where P and L
are two disjoint sets (set of points and set of lines, respectively) and I is symmetric
binary relation onP ∪ L (incidence relation). As is usually done, we impose the
following restrictions on I: two points (lines) are incident if and only if they coincide.

We need the following well known results on groups acting on graphs.
Let G be a group with proper distinct subgroups G1 and G2. Let us consider

the incidence structure with the point set P = (G : G1) and the line set (G : G2)
and incidence relation I : αIβ if and only if the set theoretical intersection of
cosets α and β is nonempty set. We shall not distinguish the incidence relation and
corresponding graph Γ(G)G1,G2 . Let l(g) be the minimal length of representation
of g in the form of products of elements from G1 and G2 The following statement
had been formulated first by G. Glauberman.

Lemma 5. Graph I is connected if and only if < G1, G2 >= G. The diameter of
I is max l(g), g ∈ G.

Let A =< a1, . . . , an|R1(a1, . . . , an), . . . , Rd(a1, . . . , an) > and
B =< b1, . . . bm|S1(b1, . . . bm), . . . , St(b1, . . . , bm) > are subgroups with genera-

tors ai, i = 1, . . . , n and bj , j = 1, . . . ,m and generic relations Ri, i = 1, . . . , d and
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Sj , j = 1, . . . , t, respectively. Free product F = A ∗B of A and B be the subgroup
< a1, . . . , an, b1, . . . , bm|R1, . . . Rd, S1, . . . , St > (see [12 ]).

The definition of an operation of free product FH of groups A and B amalga-
mated at common subgroup H can be found in [20]. If H =< e >, then FH = A∗B.

Theorem 6. (see, for instance [12]) Let G acts edge transitively but not vertex
transitively on a tree T . Then G is the free product of the stabilizers Ga and Gb of
adjacent vertices a and b amalgamated at their intersection.

Corollary 7. Let G acts edge regularly on the tree T , i. e. |Ga ∩ Gb| = 1. Then
G is the free product Ga ∗Gb of groups Ga and Gb.

We define the family of graphs D(k,K), where k > 2 is positive integer and K
is a commutative ring, such graphs have been considered in [8] for the case K = Fq
( some examples are in [7]).

let P and L be two copies of Cartesian power KN , where K is the commutative
ring and N is the set of positive integer numbers. Elements of P will be called
points and those of L lines.

To distinguish points from lines we use parentheses and brackets: If x ∈ V , then
(x) ∈ P and [x] ∈ L. It will also be advantageous to adopt the notation for co-
ordinates of points and lines introduced in [15] for the case of general commutative
ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l′2,2, l2,3, . . . , li,i, l
′
i,i, li,i+1, li+1,i, . . .].

The elements of P and L can be thought as infinite ordered tuples of elements
from K, such that only finite number of components are different from zero.

We now define an incidence structure (P,L, I) as follows. We say the point (p)
is incident with the line [l], and we write (p)I[l], if the following relations between
their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i

l′i,i − p′i,i = li,i−1p0,1 (2.1)

li,i+1 − pi,i+1 = li,ip0,1

li+1,i − pi+1,i = l1,0p
′
i,i

(This four relations are defined for i ≥ 1, p′1,1 = p1,1, l′1,1 = l1,1). This incidence
structure (P,L, I) we denote as D(K). We identify it with the bipartite incidence
graph of (P,L, I), which has the vertex set P ∪L and edge set consisting of all pairs
{(p), [l]} for which (p)I[l].

For each positive integer k ≥ 2 we obtain an incidence structure (Pk, Lk, Ik)
as follows. First, Pk and Lk are obtained from P and L, respectively, by simply
projecting each vector onto its k initial coordinates with respect to the above order.
The incidence Ik is then defined by imposing the first k−1 incidence equations and
ignoring all others. The incidence graph corresponding to the structure (Pk, Lk, Ik)
is denoted by D(k,K).

To facilitate notation in future results, it will be convenient for us to define
p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p0,0 = l0,0 = −1, p′0,0 = l′0,0 = −1, and to assume
that (6) are defined for i ≥ 0.
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Notice that for i = 0, the four conditions (2.1) are satisfied by every point and
line, and, for i = 1, the first two equations coincide and give l1,1 − p1,1 = l1,0p0,1.

The incidence relation motivated by the linear interpretation of Lie geometries
in terms their Lie algebras [16] (see [18]). Let us define the ”root subgroups” Uα,
where the ”root” α belongs to the root system
Root = {(1, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2), (2, 2)′ . . . , (i, i), (i, i)′, (i, i+1), (i+1, i) . . . }.

The ”root system above” contains all real and imaginary roots of the Kac-Moody
Lie Algebra Ã1 with the symmetric Cartan matrix. We just doubling imaginary
roots (i, i) by introducing (i, i)′.

Group Uα generated by the following ”root transformations” tα(x), x ∈ K of
the P ∪ L given by rules pβ = pβ + rβ(x), lβ = lβ + sβ(x), where β ∈ Root and
the functions rβ(x), sβ(x) are consist of summands defined by the following tables
(i ≥ 0, m ≥ 1).

s0,1(x) s1,0(x) sm,m+1(x) sm+1,m(x) sm,m(x) s′m,m(x)

li,i −li,i−1x +lr,r−1x, −lr,rx,
r −m ≥ 1 r −m ≥ 0

li,i+1 (li,i + l′i,i)x +l′r,rx, −lr,r+1x,

+li,i−1x2 r = i−m ≥ 0 r = i−m ≥ 0

li+1,i +li,ix −lr,rx, +lr+1,rx,
r = i−m ≥ 0 r = i−m ≥ 0

l′i,i li−1,ix li,i−1x −lr−1,r−1x, +l′r,r ,

r = i−m ≥ 1 r = i−m ≥ 0

TABLE 1

r0,1(x) r1,0(x) rm,m+1(x) rm+1,m(x) rm,m(x) r′m,m(x)

pi,i +pi−1,ix pi,i−1x +pr,r−1x −pr,rx
r = i−m ≥ 1 r = i−m ≥ 0

pi,i+1 +p′i,ix +p′r,rx −pr,r+1x

r = i−m ≥ 0 r = i−m ≥ 0

pi+1,i (pi,i + p′i,i)x −pr,rx, +pr+1,rx,

+pi−1,ix2 r = i−m ≥ 0 r = i−m ≥ 0

p′i,i pi−1,ix −pr−1,rx, +p′r,r ,

r = i−m ≥ 1 r = i−m ≥ 0

TABLE 2

Proposition 8. (i)For each pair (α, x), α ∈ Root, x ∈ K the transformation
tα(x) are automorphisms of D(K). The projections of these maps onto the graph
D(n,K), n ≥ 2 are elements of Aut(D(n,K)).

(ii) Group U(K) acts edge regularly on the vertices of D(K).
(iii) Group U(n,K) generated by projections of tα(x) onto the set of vertices V

of D(n,K) acts edge regularly on V .

Proof. Statement (i) follows directly from the definitions of incidence and closed
formulas of root transformations tα(x). Let < be the natural lexicographical linear
order on roots of kind (i, j), where |i − j| ≤ 1. Let us assume additionally that
(i, i) < (i, i)′ < (i, i+ 1). Then by application of transformations tα(xα), α 6= (0, 1)
to a point (p) consecutively with respect to the above order, where parameter xα
is chosen to make α component of the image equals zero, we are moving point (p)
to zero point (0). A neighbour [a, 0, . . . , 0] of the zero point can be shifted to the
line [0] by the transformation t(1,0)(−a). Thus each pair of incident elements can
be shifted to ((0), [0]) and group U acts edge regularly on vertices of D(K). This
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action is regular ((ii)) because the stabilizer of the edge (0), [0] is trivial. Same
arguments about the action of U(n,K) justify (iii).

�

Remark For K = Fq this statement had been formulated in [8].
Let k ≥ 6, t = [(k+ 2)/4], and let u = (uα, u11, · · · , utt, u′tt, ut,t+1, ut+1,t, · · · ) be

a vertex of D(k,K) (α ∈ {(1, 0), (0, 1)}, it does not matter whether u is a point or
a line). For every r, 2 ≤ r ≤ t, let
ar = ar(u) =

∑
i=0,r

(uiiu′r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at).

Proposition 9. (i) The classes of equivalence relation τ = {(u, v)|a(u) = a(v)}
form the imprimitivity system of permutation groups U(K) and U(n,K)

(ii) For any t−1 ring elements xi ∈ K), 2 ≤ t ≥ [(k+2)/4], there exists a vertex
v of D(k,K) for which
a(v) = (x2, . . . , xt) = (x).
(3i) The equivalence class C for the equivalence relation τ on the set Kn ∪Kn

is isomorphic to the affine variety Kt ∪Kt , t = [4/3n] + 1 for n = 0, 2, 3 mod 4,
t = [4/3n] + 2 for n = 1 mod 4.

Proof. Let C be the equivalence class on τ on the vertex set D(K) (D(n,K) then
the induced subgraph, with the vertex set C is the union of several connected
components of D(K) (D(n,K)).

Without loss of generality we may assume that for the vertex v of C(n,K)
satisfying a2(v) = 0, . . . at(v) = 0. We can find the values of components v′i,i) from
this system of equations and eliminate them. Thus we can identify P and L with
elements of Kt, where t = [3/4n] + 1 for n = 0, 2, 3 mod 4, and t = [3/4n] + 2 for
n = 1 mod 4.

�

We shall use notation C(t,K) (C(K)) for the induced subgraph of D(n,K) with
the vertex set C.

Remark.
If K = Fq, q is odd, then the graph C(t, k) coincides with the connected compo-

nent CD(n, q) of the graph D(n, q) (see [10]), graph C(Fq) is a q-regular tree. In
other cases the question on the connectedness of C(t,K) is open. It is clear that
g(C(t, Fq)) is ≥ 2[2t/3] + 4.

Let Uα =< tα(x)|x ∈ K > be a subgroup of U(K). It is isomorphic to the
additive group K+ of the ring K. Let UC be subgroup generated by tα(x), x ∈ K,
α ∈ {(0, 1, (1, 0), . . . , (i, i), (i, i + 1), . . . }. Let UnC be the subgroup generated by
transformations tα(x) from UC onto the graph D(n,K) (or C(n,K)).

Proposition 10. (i) The connected component CD(n,K) of the graph D(n,K)
(or its induced subgraph C(t,K)) is isomorphic to Γ(UnC)U(0,1),U(1,0) .

(ii) Projective limit of graphs D(n,K) (graphs C(t,K), CD(n,K) ) with respect
to standard morphisms of D(n+ 1,K) onto D(n,K) (their restrictions on induced
subgraphs) equals to D(K) (C(K), CD(K) = UCU(0,1),U(1,0) , respectively).

If K is an integrity domain, then D(K) and CD(K) are forests. Let C be the
connected component, i.e tree.
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Group UC acts regularly on CD(K). So we can apply theorem on group acting
regular on the tree and get the following statement.

Proposition 11. If K is integrity domain then group UC(K) is isomorphic to the
free product of two copies of K+.

3. Main statement

Theorem 12. The diameter of the graph Cm(K), m ≥ 2, K is a commutative
ring with unity of odd characteristic is bounded by function f(m), defined by the
following equations:

f(m) =


(32/3)(4(m+1)/3 − 1)−m+ 7, for m = 2 (mod3)

(32/3)(4(m−1)/3 − 1) + 4(m+5)/3 −m+ 7 for m = 1 (mod3)
(32/3)(4m/3 − 1) + 32× 4(m−3)/3 −m+ 7, for m = 0 (mod3)

Proof. Let C = Ct(K) be the block of equivalence relation τ , containing zero point
and zero line. Let us consider the stabiliser of this block. It is clear that group G
generated by elements ti,i+1(x), ti+1,i(x), i ≥ 0, t1,1(x) and ti(x) = ti,i(x)t′i,i(x),
i ≥ 2, x ∈ K stabilises C and acts regularly on this set.

Let l(g) be the minimal length of irreducible representation of g ∈ G in the form

T1(x1)T2(x2) . . . Td(xd), xi ∈ K, (3.1)
where consecutive elements Ti(xi) and Ti+1(xi+1) belong to different subgroups

U1 and U2.
As it follows from the group theoretical interpretation of lemma 3 the diameter

of group G is equal to the maximal length l(g).
Let G1,1 be the totality of all commutator elements [t0,1(x), t1,0(y)] = t(x, y).

Then applications of T1,1(y) = t(1, y) to zero point (0) (or line) do not change
its first component. For the second component u1,1 of (u) = (0)T1,1(y) we have
u1,1 = y. In fact, (O)T1,1(y) = (O)t1,1(y) and l(u) ≤ 4.

Let us consider the totality G1,2 of the commutators t(x, y) = [t0,1(x), T1,1(y)].
Then its action of on zero line (point) does not change its first, second components.
The third component will be 2xy. Let us consider T1,2(y) = t(x/2, y). Let u =
[O]T1,2(y), then u1,2 = y. Similarly, we construct the totality G2,1 of commutators
t(x, y)[t1,0(x)T1,1(y)] containing element T = T2,1(y), such that OT = OT2,1(y) =
[0, 0, 0, y, . . . ]. We can write the irreducible presentation of g ∈ G in the form
(3.1) starting either with element from U1 or U2. It means that l(g) ≤ 8 for
g ∈ G1,2 ∪G2,1

Let us define G2,2 as totality of commutators [t1,0(x), T1,2(y)] (or equivalently
as set of elements of kind [t0,1(x), T2,1(y)]. Then for element t ∈ G2,2 we have
Ot = Ot2(xy) = (0, 0, 0, 0, xy, xy, . . . ). We have l(g) ≤ 16 for g ∈ G2,2.

We can define recurrently Gi, i+ 1, Gi+ 1, i and Gi+1,i+1 , i ≥ 2 as totalities
of elements of kind [t0,1(x), Ti,i(y)], [t1,0(x), Ti,i(y)] and [t0,1(x), Ti,i+1(y)], respec-
tively. The length of elements from Gi,i+1 and Gi+1,i are bounded by 22i+1 and
l(g) ≤ 22i+2 for g ∈ Gi+1,i+1). Notice, that the element g ∈ Gα acting on element
v (point or line) changing only components vβ , β > α. We can find an element
g ∈ Gα, such that for u = vg the component uα equals zero.

Let u ∈ G be element such that Ou = v. Then by consecutive applications
of appropriate transformations g ∈ Gα with respect to natural order on roots we
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can move v to O It means that each element g ∈ G can be presented as product
g0,1g1,0g1,1 . . . gα . . . , where gα ∈ Gα. Let d(α) be the length of gα. We can bound
the length of g by the sum S of dα. In case when α is not simple root we have a
choice to write irreducible representation of gα, is with the first character from U1

or the one from U2. It allows slightly improve the bound foe the diameter - get
S −m+ 1 instead of S.

Let us count S for the case m = 2mod 3. If m = 2 then S = 6. In case of m ≥ 5
each triple of roots (i, i+1), (i+1, i), (i+1, i+1), i ≥ 1 contributes summands 22i+1,
22i+1 and 22i+2. So we can count S via the sum of the geometrical progression.

Let m = 2mod 3 then each triple as above contribute summand 22i+3. So we
have the geometrical progression 2(2i+3), i = 1, . . . (m−2)/3. The roots (0, 1), (1, 0)
and (1, 1) contribute 6.

In case m = 0mod 3 we have a geometrical progression 22i+3, i = 1, . . . ,m/3− 1
and last root contributes 32× 4m/3−1.

In case m = 1mod3) we have a geometrical progression 22i+3, i = 1, . . . , (m−4)/3
and two last roots contributes 64× 4(m−4)/3

This way we are getting the formulae for the bound.
�

Remark. Theorem 1 follows directly from theorem 12 and Proposition 3.
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