RANK 2 ARITHMETICALLY COHEN-MACAULAY VECTOR BUNDLES ON $K 3$ AND ENRIQUES SURFACES

E. Ballico
Dept. of Mathematics
University of Trento
38050 Povo (TN), Italy
ballico@science.unitn.it

Abstract

Here we study arithmetically Cohen-Macaulay rank 2 vector bundles with trivial determinant on $K 3$ and Enriques surfaces.

1. Introduction

Let X be either an Enriques surface or a $K 3$-surface defined over an algebraically closed field \mathbb{K} such that $\operatorname{char}(\mathbb{K}) \neq 2$. Let η_{+}denote the set of all ample line bundles on X. Let E be any vector bundle on X. We will say that E is WACM or that it is weakly arithmetically Cohen-Macaulay if $h^{1}(X, E \otimes L)=h^{1}\left(X, E \otimes L^{*}\right)=0$ for all $L \in \eta_{+}$. We will say that E is ACM or that it is arithmetically Cohen-Macaulay if it is WACM and $h^{1}(X, E)=0$. We will say that E is SACM or that it is strongly arithmetically Cohen-Macaulay if it is ACM and $h^{1}\left(X, E \otimes \omega_{X}\right)=0$. Hence on a $K 3$ surface a vector bundle is ACM if and only if it is SACM. This definition is very natural, but different from the usual one (unless X is a $K 3$ surface with $\operatorname{Pic}(X) \cong \mathbb{Z})$ in which we fix an ample $H \in \mathbb{Z}$ and only require $h^{1}\left(X, E \otimes H^{\otimes t}\right)=0$ for all $t \in \mathbb{Z}$ (see [6] and references therein for many papers using the classical definition on varieties with $\operatorname{Pic}(X) \neq \mathbb{Z})$. To state our results we introduce a few definitions. We recall that an Enriques surface X is said to be nodal if there is an integral curve T such that $T^{2}<0$. A generic Enriques surface is not nodal ([3], Th. 4).

Theorem 1. Let X be a non-nodal Enriques surface and E a rank 2 ACM vector bundle on X such that $\operatorname{det}(E) \cong \mathcal{O}_{X}$. Then one of the following cases occurs.
(i) $c_{1}(E)=1$ and E is a member of the family of ACM vector bundles described in Example 1;
(ii) E is an extension of a line bundle A^{*} by its dual A.

In case (ii) $c_{2}(E)=-A^{2}$ is an even integer. If $E \neq A \oplus A^{*}$ and we are in case (ii), then $c_{2}(E) \in\{0,2\}$.

[^0]Roughly speaking, the family $\left\{E_{1}\right\}$ of ACM vector bundles described in Example 1 depends from two parameters: each E_{1} uniquely determines a point $Z \in X$ and a very general point $Z \in X$ determines one of these vector bundles.

We will say that a $K 3$-surface X has Property $(+)$ if X contains no smooth rational curve, i.e. (adjunction formula) no integral curve T such that $T^{2}=-2$. The adjunction formula shows that X has Property $(+)$ if and only if there is no effective divisor D on X such that $D^{2}<0$. Hence X has Property (+) if and only if every effective divisor is nef. If $\mathbb{K}=\mathbb{C}$, then a global Torelli theorem makes easy to construct $K 3$-surfaces with Property (+) (see [7], Lemma 4.3, for a construction of an elliptic $K 3$ surface with $\rho=2$ and Property $(+))$.

Theorem 2. Let X be a K3-surface with Property (+) and not quasi-elliptic. Let δ be the minimal self-intersection of an ample line bundle on $X . \delta$ is a positive even integer. Let E be a rank 2 ACM vector bundle on X such that $\operatorname{det}(E) \cong \mathcal{O}_{X}$. Then one of the following cases occurs:
(i) There is an integer t such that $2 \leq t \leq \delta / 2+2$ and E is one of the vector bundles E_{t} described in Example 2; in this case $c_{2}(E)=t$;
(ii) E is an extension of a line bundle A^{*} by its dual A.

In case (ii) $c_{2}(E)=-A^{2}$ is an even integer. If $E \neq A \oplus A^{*}$ and we are in case (ii), then $c_{2}(E) \in\{0,2,4\}$.

If $\operatorname{char}(\mathbb{K}) \neq 2,3$, then no surface is quasi-elliptic. Fix any integer t such that $2 \leq t \leq \delta / 2+2$. Roughly speaking, the set $\left\{E_{t}\right\}$ of ACM vector bundles described in Example 2 for the integer t depends from $2 t+(t-1)$ parameters: each E_{t} uniquely determines a length t zero-dimensional subschemes of X and a very general length t zero-dimensional subschemes of X determines a $(t-1)$-dimensional family of non-isomorphic bundles contained in the set $\left\{E_{t}\right\}$.

Remark 1. Let X be a $K 3$-surface with Property (+). Assume that X has no elliptic pencil. Equivalently, assume that there is no integral curve T such that $T^{2} \leq 0$. If this condition is satisfied we will say that X has Property $(++)$. Assume that X has Property $(++)$. This assumption implies that every effective divisor $D \neq 0$ on X is nef and big. We have $h^{0}(X, D) \geq D^{2} / 2+2$ and hence the linear system $|D|$ covers X. Fix any integral curve $T \subset X$. If T is not contained in a divisor of $|D|$, then $D \cdot T>0$, because $|D|$ covers X. If T is contained in a divisor of $|D|$, then $D \cdot T>0$, because $T^{2}>0$. Hence D is ample by Nakai criterion ([5], Th. 1.5.1). Use also Riemmann-Roch to see that if X has Property (++) and $L \in \operatorname{Pic}(X)$, then the following conditions are equivalent:
(i) $L \in \eta_{+}$;
(ii) $h^{0}(X, L)>0$ and $L \neq \mathcal{O}_{X}$;
(iii) $h^{0}(X, L) \geq 2$;
(iv) $L^{2} \geq 0, L \neq \mathcal{O}_{X}$, and $L^{*} \notin \eta_{+}$;
(v) $L^{2}>0$ and $L^{*} \notin \eta_{+}$.

Theorem 3. Let X be a K3-surface with Property (++). Let E be a rank 2 vector bundle on X such that $\operatorname{det}(E) \cong \mathcal{O}_{X}$ and $c_{2}(E) \leq 0$. Then one of the following cases is true:
(i) $E \cong \mathcal{O}_{X}^{\oplus 2}$;
(ii) E there is $L \in \operatorname{Pic}(X)$ such that L is ample and $A C M, c_{2}(E)=-L^{2}<0$ and $E \cong L \oplus L^{*}$.

2. X an Enriques surface

In this section X is an Enriques surface defined over an algebraically closed field \mathbb{K} such that $\operatorname{char}(\mathbb{K}) \neq 2$. Hence $\omega_{X} \neq \mathcal{O}_{X}$ and $\omega_{X}^{\otimes 2} \cong \mathcal{O}_{X}$ ([4], p. 76). Since $\operatorname{char}(\mathbb{K}) \neq 2, h^{i}\left(X, \mathcal{O}_{X}\right)=0$ for $i=1,2, \omega_{X} \neq \mathcal{O}_{X}$ (i.e. ω_{X} has order 2) and ω_{X} is the only non-trivial torsion line bundle on X ([4], p. 76). The intersection product on $N S(X)$ is a perfect pairing of \mathbb{Z}-modules ([4], p. 78).

Let $T \subset X$ be an integral curve such that $T^{2}<0$. Since $T \cdot \omega_{X}=0, T^{2}=-2$ and $p_{a}(T)=0$, i.e. $T \cong \mathbf{P}^{1} . X$ is said to be nodal if there is an integral curve T such that $T^{2}<0$. A generic Enriques surface is not nodal ([3], Th. 4).

For any $M \in \operatorname{Pic}(X)$ and any rank 2 vector bundle E on X Riemann-Roch says $\chi(M)=M^{2} / 2+1$ and $\chi(E)=c_{1}(E)^{2} / 2-c_{2}(E)+2$. Fix any $L \in \eta_{+}$. Kodaira vanishing gives $h^{i}\left(X, L^{*}\right)=0, i=0,1$ (see [3], Th. 2.6, when L is nef and big). Nakai criterion of ampleness ([5], I.5.1) shows that $\omega_{X} \otimes L$ is ample. Hence Kodaira vanishing ([3], Th. 2.6) and Serre duality gives $h^{i}(X, L)=0, i=1,2$. Hence Rieman-Roch gives $h^{0}(X, L)=1+L^{2} / 2$. We just checked that both \mathcal{O}_{X} and ω_{X} are SACM.

Remark 2. Fix any $A \in \operatorname{Pic}(X)$. Serre duality gives that A is SACM if and only if both A and A^{*} are ACM.

Example 1. Fix an integer $t \geq 2$ and $L \in \eta_{+}$such that $L^{2} / 2+1 \geq t$. We just saw that $h^{0}(X, L)=L^{2} / 2+1$. Since $t \leq h^{0}(X, L)$ and $h^{1}(X, L)=0$, we have $h^{1}\left(X, \mathcal{I}_{Z} \otimes L\right)=0$ for a general $Z \subset X$ such that $\sharp(Z)=t$. Now assume that \mathbb{K} is uncountable. Since $\operatorname{Pic}^{0}(X)$ is countable, there are only countably many ample line bundles on X. Hence there is a non-empty set W_{t} of the Hilbert scheme $\operatorname{Hilb}^{t}(X)$ of all zero-dimensional length t subschemes of Z such that $\operatorname{Hilb}^{t}(X) \backslash W_{t}$ is a union of countably many proper algebraic subsets of $\operatorname{Hilb}^{t}(X)$, each $Z \in W_{t}$ is locally a complete intersection and $h^{1}\left(X, \mathcal{I}_{Z} \otimes L\right)=0$ for all $L \in \eta_{+}$such that $L^{2} / 2+1 \geq t$ and all $Z \in W_{t}$. Fix any $Z \in W_{t}$ and consider the general extension

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X} \rightarrow E_{t} \rightarrow \mathcal{I}_{Z} \rightarrow 0 \tag{1}
\end{equation*}
$$

Since $h^{0}\left(X, \omega_{X}\right)=0$, the Cayley-Bacharach condition is satisfied ([1], Th. 1.4) and hence E_{t} is locally free. Since $h^{1}\left(X, \mathcal{O}_{X}\right)=0$, [1], Th. 1.4 , gives that the set of all non-trivial extensions is parametrized by a $(t-1)$-dimensional projective space. Two non-proportional extensions gives non-isomorphic vector bundles, because $h^{0}\left(X, E_{t}\right)=1$ and hence each E_{t} fits in a unique extension (1). In particular, if $t=1$, then the point Z gives, up to isomorphisms, a unique vector bundle E_{t}. Now take any t. Since $Z \neq \emptyset, h^{0}\left(X, E_{t}\right)=1$. Thus E_{t} uniquely determines Z as the scheme-theoretic locus at which any non-zero section of E_{t} drops rank. We have $\operatorname{det}\left(E_{t}\right) \cong \mathcal{O}_{X}, c_{2}\left(E_{t}\right)=t$ and E_{t} is slope properly semistable with respect to any polarization on X. Since \mathcal{O}_{X} is spanned, $h^{0}\left(X, \mathcal{O}_{X}\right)=1$ and $h^{1}\left(X, \mathcal{O}_{X}\right)=0$, we have $h^{1}\left(X, \mathcal{I}_{Z}\right)=t-1$. Hence (1) gives $h^{1}\left(X, E_{1}\right)=0$ and $h^{1}\left(X, E_{t}\right)=t-1>0$ if $t>1$. Fix $L \in \eta_{+}$. We saw that $h^{1}(X, L)=0$. Since $Z \in W_{t}, h^{1}\left(X, \mathcal{I}_{Z} \otimes L\right)=0$. Hence $h^{1}\left(X, E_{t} \otimes L\right)=0$. Since $\operatorname{det}\left(E_{t}\right) \cong \mathcal{O}_{X}$ and $\operatorname{rank}\left(E_{t}\right)=2, E_{t}^{*} \cong E_{t}$. Hence $h^{1}\left(X, E \otimes L^{*}\right)=h^{1}\left(X, E \otimes\left(L \otimes \omega_{X}\right)\right)$. Since $L \otimes \omega_{X} \in \eta_{+}$by Nakai criterion of ampleness ([5], I.5.1), we get that E_{t} is WACM and it is ACM if and only if $t=1$. Tensor the case $t=1$ of (1) with ω_{X}. Since $h^{0}\left(X, \omega_{X}\right)=h^{1}\left(X, \omega_{X}\right)=0$, we get $h^{1}\left(X, E_{1} \otimes \omega_{X}\right)=1$. Hence E_{1} is not SACM. Obviously, if E_{t} is as above, then $E_{t} \otimes \omega_{X}$ is WACM. Since $\operatorname{rank}(E)=2$ and
$\omega_{X}^{\otimes 2} \cong \mathcal{O}_{X}, \operatorname{det}\left(E_{t} \otimes \omega_{X}\right) \cong \mathcal{O}_{X}$. Hence $\left(E_{t} \otimes \omega_{X}\right)^{*} \cong E_{t} \otimes \omega_{X}$. By tensoring (1) with the numerically trivial line bundle ω_{X} we get $c_{2}\left(E_{t} \otimes \omega_{X}\right)=t$. Serre duality gives $h^{1}\left(X, E_{t} \otimes \omega_{X}\right)=h^{1}\left(X,\left(E_{t} \otimes \omega_{X}\right)^{*} \otimes \omega_{X}\right)=h^{1}\left(X, E_{t}\right)$. Hence $E_{t} \otimes \omega_{X}$ is ACM if and only if $t=1$. $E_{t} \otimes \omega_{X}$ is properly semistable in the sense of MumfordTakemoto with respect to any polarization of X. By tensoring (1) with ω_{X} we get that $h^{0}\left(X, E_{t} \otimes \omega_{X}\right)=0$. Hence E_{t} and $E_{t} \otimes \omega_{X}$ are not isomorphic. Now assume $t \geq 2$. Fix any $Z \in W_{t}$ and consider a general extension

$$
\begin{equation*}
0 \rightarrow \omega_{X} \rightarrow G_{t} \rightarrow \mathcal{I}_{Z} \rightarrow 0 \tag{2}
\end{equation*}
$$

Since $h^{0}\left(X, \mathcal{I}_{Z^{\prime}}\right)=0$ for any length $t-1$ subscheme Z^{\prime} of Z, the Cayley-Bacharach condition is satisfied and hence G_{t} is locally free. We need to exclude the case $t=1$, because in this case the Cayley-Bacharach condition is not satisfied and hence the middle term of any such extension is not locally free. $\operatorname{det}\left(G_{t}\right) \cong \omega_{X}$ and $c_{2}\left(G_{t}\right)=t$. As above we see that G_{t} is WACM, but not ACM. G_{t} is properly semistable with respect to any polarization of X. Again, each Z_{t} determines a $(t-1)$-dimensional family of vector bundles G_{t} and each of them uniquely determine Z as the scheme at which any non-zero section of $H^{0}\left(X, G_{t} \otimes \omega_{X}^{*}\right)$ drops rank. Fix $H \in \eta_{+}$.

Claim: E_{t} and G_{t} are not an extensions of two line bundles.
Proof of the Claim: We will only write down the proof for E_{t}, since the one for G_{t} requires only notational modifications (e.g. using $h^{0}\left(X, G_{t} \otimes \omega_{X}\right)$ instead of $\left.h^{0}\left(X, E_{t}\right)\right)$. In order to obtain a contradiction we assume that E is an extension of a line bundle M^{*} by M. Here we use $\operatorname{det}\left(E_{t}\right) \cong \mathcal{O}_{X}$. Set $z:=M \cdot H$. Notice that E_{t} is properly H-semistable. Hence $z \leq 0$. Since $h^{0}\left(X, E_{t}\right)>0$, either $h^{0}(X, M)>0$ or $h^{0}\left(X, M^{*}\right)>0$. First assume $z<0$. Hence $h^{0}(X, M)=0$. Thus $h^{0}\left(X, M^{*}\right)>0$. However, any non-zero section σ of E drops rank exactly at the non-zero zerodimensional scheme Z. Since $h^{0}(X, M)=0, \sigma$ drops rank on the zero locus D of the section σ^{\prime} of M^{*} induced by σ. Since D has pure codimension one, we got a contradiction. Now assume $z=0$. Since $H \in \eta_{+}, H \cdot M^{*}=-H \cdot M=0$, and $h^{0}(X, M)+h^{0}\left(X, M^{*}\right)>0, M$ must be trivial. Thus $c_{2}\left(E_{t}\right)=0$, contradiction.

Proposition 1. Fix an integer $t \geq 2$ and $L \in \eta_{+}$. The following conditions are equivalent:
(a) $t \leq L^{2} / 2+1$;
(b) $h^{1}\left(X, E_{t} \otimes L\right)=0$;
(c) $h^{1}\left(X, E_{t} \otimes L^{*}\right)=0$;
(d) $h^{1}\left(X, G_{t} \otimes L\right)=0$;
(e) $h^{1}\left(X, G_{t} \otimes L^{*}\right)=0$.

Proof. We will do the proofs for E_{t}, since the proofs for G_{t} require only notational modifications. First assume $t \leq L^{2} / 2+1$. We saw that $h^{1}(X, L)=0$. Since $Z \in W_{t}, h^{1}\left(X, \mathcal{I}_{Z} \otimes L\right)=0$. Hence $h^{1}\left(X, E_{t} \otimes L\right)=0$, i.e. (a) implies (b). Since $\operatorname{det}\left(E_{t}\right) \cong \mathcal{O}_{X}$ and $\operatorname{rank}\left(E_{t}\right)=2, E_{t}^{*} \cong E_{t}$. Hence $h^{1}\left(X, E \otimes L^{*}\right)=h^{1}(X, E \otimes$ $\left.\left(L \otimes \omega_{X}\right)\right)$. Since $L \otimes \omega_{X} \in \eta_{+}$by Nakai criterion of ampleness ([5], I.5.1) and $\left(L \otimes \omega_{X}\right)^{2}=L^{2}$, the definition of the set W_{t} gives that (a) implies (c). Now assume $t \geq L^{2} / 2+2=1+h^{0}(X, L)$. Hence $h^{1}\left(X, \mathcal{I}_{Z} \otimes L\right)>0$. Since $h^{1}(X, L)=0([3]$, Th. 2.6), tensoring (1) with L we get $h^{1}(X, L)=0$. Since $\left(L \otimes \omega_{X}\right)^{2}=L^{2}$, we also get $h^{1}\left(X, E \otimes\left(\omega_{X} \otimes L\right)>0\right.$. Since $E_{t}^{*} \cong E_{t}$, Serre duality gives $h^{1}\left(X, E_{t} \otimes L^{*}\right)>0$. Since $L^{2}=\left(L \otimes \omega_{X}\right)^{2}$, we also see that (a), (b) and (c) are equivalent.

Proof of Theorem 1. Let E be a rank 2 ACM vector bundle on X such that $\operatorname{det}(E) \cong \mathcal{O}_{X}$. Since $\chi\left(\mathcal{O}_{X}\right)=1$ and ω_{X} and $\operatorname{det}(E)$ are numerically trivial, Riemann-Roch gives $\chi(F)=c_{1}(E)^{2} / 2-c_{2}(E)+2$. Since $h^{1}(X, E)=0$ and $c_{1}(E)$ is numerically trivial, we get $h^{0}(X, E)+h^{2}(X, E)-c_{2}(E)+2 \geq 0$. Fix $H \in \eta_{+}$ and let A be the rank 1 subsheaf of E such that $w:=A \cdot H$ is maximal. The maximality of the integer w and the ampleness of H gives that A is saturated in E. Since $\operatorname{det}(E) \cong \mathcal{O}_{X}$, we get an exact sequence

$$
\begin{equation*}
0 \rightarrow A \rightarrow E \rightarrow \mathcal{I}_{Z} \otimes A^{*} \rightarrow 0 \tag{3}
\end{equation*}
$$

with Z a zero-dimensional subscheme of X and $c_{2}(E)=$ length $(Z)-A^{2}$. Since $h^{1}(X, E)=0$, we get $h^{1}\left(X, \mathcal{I}_{Z} \otimes A^{*}\right) \leq h^{2}(X, A)$ and $h^{1}(X, A) \leq h^{0}\left(X, \mathcal{I}_{Z} \otimes A^{*}\right)$. Serre duality gives $h^{2}(X, A)=h^{0}\left(X, A^{*} \otimes \omega_{X}\right)$.
(a) Here we assume $w=0$. Since H is ample and ω_{X} has order $2, h^{0}\left(X, A^{*} \otimes\right.$ $\left.\omega_{X}\right)>0$ if and only if $A \cong \omega_{X}$. Hence $h^{1}\left(X, \mathcal{I}_{Z} \otimes A^{*}\right)=0$ if $A \neq \omega_{X}$. For the same reason $h^{0}(X, A)+h^{0}\left(X, A^{*}\right)>0$ if and only if $A \in\left\{\mathcal{O}_{X}, \omega_{X}\right\}$. First assume $A \notin\left\{\mathcal{O}_{X}, \omega_{X}\right\}$. We get $h^{1}\left(X, \mathcal{I}_{Z} \otimes A^{*}\right)=0$. Hence $h^{1}\left(X, A^{*}\right)=0$ and length $(Z) \leq h^{0}\left(X, A^{*}\right)=0$. Thus E is an extension of A^{*} by A.
(a1) Here we assume $h^{1}\left(X, A^{\otimes 2}\right)>0$. If $h^{0}\left(X, A^{\otimes 2}\right)=h^{2}\left(X, A^{\otimes 2}\right)=0$, then Riemann-Roch gives $A^{2}<0$ and hence $A^{2}=-2$. Now assume $h^{0}\left(X, A^{\otimes 2}\right)+$ $h^{2}\left(X, A^{\otimes 2}\right)>0$ and that X is not nodal. Since X has no curve with negative selfintersection, every effective divisor is nef. Since $h^{0}\left(X, A^{\otimes 2}\right)+h^{2}\left(X, A^{\otimes 2}\right)>0$ and ω_{X} is numerically trivial, we get that $A^{\otimes 2}$ is nef. Hence $A^{2} \geq 0$. Riemann-Roch gives that either $h^{0}(X, A)>0$ or $h^{0}\left(X, A^{*} \otimes \omega_{X}\right)>0$. Hence either $h^{0}\left(X, A^{\otimes 2}\right)>0$ or $h^{0}\left(X, A^{\otimes-2}\right)>0$. Since $w=0$ any of these inequalities implies $A^{\otimes 2} \in\left\{\mathcal{O}_{X}, \omega_{X}\right\}$. We cannot have $A^{\otimes 2} \cong \omega_{X}$, because $\operatorname{Tors}(X) \cong \mathbb{Z} / 2 \mathbb{Z}$ is generated by ω_{X}. Hence $A^{\otimes 2} \cong \mathcal{O}_{X}$, contradicting the assumption $h^{1}\left(X, A^{\otimes 2}\right)>0$. In summary, if $w=0$, $A \notin\left\{\mathcal{O}_{X}, \omega_{X}\right\}$ and $E \neq A \oplus A^{*}$, then $A^{2}=-2$.
(a2) Here we assume $h^{1}\left(X, A^{\otimes 2}\right)=0$. Hence (4) splits. Hence both A and A^{*} are ACM. Remark 2 gives that both A and A^{*} are SACM. Hence E is SACM.
(a3) Here we assume $A \in\left\{\mathcal{O}_{X}, \omega_{X}\right\}$. First assume $Z \neq \emptyset$. Since length $(Z) \leq$ $h^{2}(X, A)$, we get $A \cong \mathcal{O}_{X}$ and that Z is a point. Hence E is one of the vector bundles E_{1} described in Example 1. If $Z=\emptyset$, then $E \cong A \oplus A^{*}$, because $h^{1}\left(X, \mathcal{O}_{X}\right)=0$.
(b) Here we assume $w>0$. Hence $h^{0}\left(X, A^{*}\right)=0$. Serre duality gives $h^{2}(X, A)=0$. Hence $Z=\emptyset$ and $h^{1}(X, A)=h^{1}\left(X, A^{*}\right)=0$. Thus RiemannRoch gives $h^{0}(X, A)=A^{2} / 2+1$ and $h^{2}\left(X, A^{*}\right)=A^{2} / 2+1$. Hence $A^{2} \geq-2$. Since $h^{0}\left(X, A^{*}\right)=h^{2}(X, A)=0$, (4) gives $h^{0}(X, E)=h^{0}(X, A)$ and $h^{2}(X, E)=$ $h^{2}\left(X, A^{*}\right)$. Since $Z=\emptyset$, (4) gives $c_{2}(E)=-A^{2}$. Since $\operatorname{det}(E) \cong \mathcal{O}_{X}, \chi(E)=$ $-c_{2}(E)+2=A^{2}+2$.
(b1) Here we assume $h^{1}\left(X, A^{\otimes 2}\right)>0$. As in case (a1) we get $A^{2}=-2$ if $h^{0}\left(X, A^{\otimes 2}\right)=h^{2}\left(X, A^{\otimes 2}\right)=0$. Now assume $A^{2} \geq 0$ and that X is not nodal. Riemma-Roch gives $h^{0}\left(X, A^{\otimes 2}\right)+h^{2}\left(X, A^{\otimes 2}\right)>0$. Hence either $\left.h^{0}\left(X, A^{\otimes 2}\right)\right)>0$ or $h^{0}\left(X, A^{\otimes-2} \otimes \omega_{X}\right)>0$. The latter inequality cannot occur, because $w>0$. Hence $A^{\otimes 2}$ is effective. Since X is not nodal, $A^{\otimes 2}$ is nef. Hence the assumption $h^{1}\left(X, A^{\otimes 2}\right)>0$ and the vanishing theorem [3], Theorem 2.6, for nef and big effective divisors gives $A^{2}=0$.
(b2) Here we assume $h^{1}\left(X, A^{\otimes 2}\right)=0$. Hence (4) splits. Hence both A and A^{*} are ACM. Remark 2 gives that both A and A^{*} are SACM. Hence E is SACM.
(c) Here we assume $w<0$. Hence E is H-stable in the sense of Mumford and Takemoto. Since $c_{1}(E) \cdot H=0$, this implies $h^{0}(X, E)=0$. Since E is H-stable,
$E^{*} \otimes \omega_{X}$ is an H-stable with trivial determinant. Hence $h^{0}\left(X, E \otimes \omega_{X}\right)=0$, i.e. $h^{2}(X, E)=0$. Since E is ACM, Riemman-Roch gives $-c_{2}(E)+2=\chi(E)=0$, i.e. $-A^{2}+\operatorname{length}(Z)=2$. Riemann-Roch for A gives that A^{2} is an even integer. Since $w<0, h^{2}(X, A)=0$. Hence $h^{1}(X, E)=0$ implies $h^{1}\left(X, \mathcal{I}_{Z} \otimes A^{*}\right.$. Hence $h^{1}\left(X, A^{*}\right)=0$ and $h^{0}\left(X, A^{*}\right) \geq$ length (Z). Thus $Z=\emptyset$ if $h^{0}\left(X, A^{*}\right)=0$. Hence $h^{0}\left(X, A^{*}\right)=0$ implies $c_{2}(E)=-A^{2}=2$.
(c1) Here we assume that X is not nodal. Assume $h^{0}\left(X, A^{*}\right)>0$. Since X is not nodal, $A^{2} \geq 0$. Hence if X is not nodal and $Z \neq \emptyset$, then length $(Z)=2$ and $A^{2}=0$. However, $h^{1}\left(X, A^{*}\right)=0$ and $A^{2}=0$, gives $h^{0}\left(X, A^{*}\right) \leq 1<\operatorname{length}(Z)$. Hence if X is not nodal, then $Z=\emptyset, c_{2}(E)=2=A^{2}$ and E is an extension of A^{*} by A.

Remark 3. Fix $A, B \in \operatorname{Pic}(X)$. Let E be the middle term of an extension ϵ of B by A. If $\epsilon=0$ and $A \cong B$, then $h^{0}(X, \operatorname{End}(E))=4$. If $\epsilon=0$ and $A \neq B$, then $h^{0}(X, \operatorname{End}(E))=2$ and any element of $H^{0}(X, \operatorname{End}(E))$ may be put is a diagonal form. Now assume $\epsilon \neq 0$ and $h^{0}\left(X, E \otimes A^{*}\right)=1$. The latter condition is satisfied if there is an ample line bundle H such that either $A \cdot H>B \cdot H$ or $A \neq B$ and $A \cdot H=B \cdot H$. Then $h^{0}(X, \operatorname{End}(E))=1+h^{0}\left(X, A \otimes B^{*}\right)$ and every element of $H^{0}(X, E n d(E))$ may be put in a triangular form with the same constant on the two diagonal elements and an element of $H^{0}\left(X, A \otimes B^{*}\right)$ as the (1,2)-entry.

3. X A $K 3$-SURFACE

In this section X is a smooth and projective $K 3$-surface. Hence $\omega_{X} \cong \mathcal{O}_{X}$, $h^{1}\left(X, \mathcal{O}_{X}\right)=0, b_{2}(X)=22$ and $\operatorname{Pic}(X) \cong \mathbb{Z}^{\rho}$ for some integer ρ such that $1 \leq$ $\rho \leq 22$. If $\operatorname{char}(\mathbb{K})=0$, then $\rho \leq 20$. For any $L \in \operatorname{Pic}(X)$ and any rank 2 vector bundle on X we have $\chi(L)=L^{2} / 2+2$ and $\chi(E)=\operatorname{det}(E)^{2} / 2-c_{2}(E)+4$ (Rieman-Roch). Hence L^{2} is always an even integer. Now assume $L \in \eta_{+}$. Hence $h^{0}\left(X, L^{*}\right)=h^{2}(X, L)=0$. Kodaira vanishing gives $h^{1}(X, L)=h^{1}\left(X, L^{*}\right)=0$. In positive characteristic we use [8] to get Kodaira vanishing. However, to apply [8], Cor. 8, we need to assume that X is not quasi-elliptic. We just recall that no surface is quasi-elliptic if $\operatorname{char}(\mathbb{K}) \neq 2,3$. Hence $h^{0}(X, L)=L^{2} / 2+2$ for every $L \in \eta_{+}$if $\operatorname{char}(\mathbb{K}) \neq 2,3$.

Example 2. Set $\delta:=\min \left\{L^{2}: L \in \eta_{+}\right\}$. δ is a positive even integer. Fix an integer t such that $2 \leq t \leq \delta / 2+2$. Fix $L \in \eta_{+}$. Since $L^{2} \geq \delta$, we have $h^{0}(X, L)=L^{2} / 2+$ $1 \geq t$. Since $h^{0}(X, L) \geq t$ and $h^{1}(X, L)=0$, we have $h^{1}\left(X, \mathcal{I}_{Z} \otimes L\right)=0$ for a general $Z \subset X$ such that $\sharp(Z)=t$. Now assume that \mathbb{K} is uncountable. Since $\operatorname{Pic}^{0}(X)$ is countable, there are only countably many ample line bundles on X. Hence there is a non-empty set W_{t} of the Hilbert scheme $\operatorname{Hilb}^{t}(X)$ of all zero-dimensional length t subschemes of Z such that $\operatorname{Hilb}^{t}(X) \backslash W_{t}$ is a union of countably many proper algebraic subsets of $\operatorname{Hilb}^{t}(X)$, each $Z \in W_{t}$ is locally a complete intersection and $h^{1}\left(X, \mathcal{I}_{Z} \otimes L\right)=0$ for all $L \in \eta_{+}$such that $L^{2} / 2+2 \geq t$ and all $Z \in W_{t}$. Fix any $Z \in W_{t}$ and consider the general extension (1). Since $h^{0}\left(X, \omega_{X}\right)=0$ and $t \geq 2$, the Cayley-Bacharach condition is satisfied ([1], Th. 1.4) and hence E_{t} is locally free. We have $\operatorname{det}\left(E_{t}\right) \cong \mathcal{O}_{X}, c_{2}\left(E_{t}\right)=t$ and E_{t} is slope properly semistable with respect to any polarization on X. Since $h^{1}\left(X, \mathcal{O}_{X}\right)=0$, [1], Th. 1.4, gives that the set of all non-trivial extensions is parametrized by a $(t-1)$-dimensional projective space. Since $Z \neq \emptyset, h^{0}\left(X, E_{t}\right)=1$. Thus E_{t} uniquely determines Z as the scheme-theoretic locus at which any non-zero section of E_{t} drops rank. Since
\mathcal{O}_{X} is spanned, $h^{0}\left(X, \mathcal{O}_{X}\right)=1$ and $h^{1}\left(X, \mathcal{O}_{X}\right)=0$, we have $h^{1}\left(X, \mathcal{I}_{Z}\right)=t-1$. Hence (1) gives $h^{1}\left(X, E_{1}\right)=0$ and $h^{1}\left(X, E_{t}\right)>0$ if $t>1$. Fix $L \in \eta_{+}$. We saw that $h^{1}(X, L)=0$. Since $Z \in W_{t}$ and $t \leq h^{0}(X, L), h^{1}\left(X, \mathcal{I}_{Z} \otimes L\right)=0$. Hence $h^{1}\left(X, E_{t} \otimes L\right)=0$. Since $\operatorname{det}\left(E_{t}\right) \cong \mathcal{O}_{X}$ and $\operatorname{rank}\left(E_{t}\right)=2, E_{t}^{*} \cong E_{t}$. Hence $h^{1}\left(X, E \otimes L^{*}\right)=h^{1}(X, E \otimes L)$. Thus E_{t} is WACM, but not ACM. E_{t} is properly semistable in the sense of Mumford-Takemoto with respect to any polarization of X. As in the case of an Enriques surface we see that E is not an extension of two line bundles. Conversely, take a zero-dimensional scheme $Z \subset X, Z \neq \emptyset$ and take any extension (1) with locally free middle term, F. set $t:=\operatorname{length}(Z)$. Since F is locally free, the Cayley-Bacharach condition must be satisfied and hence $t \geq 2$. Now assume that F is WACM. Fix $L \in \eta_{+}$. Since $h^{2}(X, L)=0$ and $h^{1}(X, F \otimes L)=0$, we get $h^{1}\left(X, \mathcal{I}_{Z} \otimes L\right)=0$. Hence $t \geq h^{0}(X, L)$. Taking L with minimal selfintersection, we get $t \leq \delta / 2+2$. Since $h^{1}\left(X, \mathcal{I}_{Z} \otimes L\right)=0$ for all $L \in \eta_{+}$, we see that all WACM non-trivial vector bundles E with $\operatorname{det}(E) \cong \mathcal{O}_{X}, h^{0}(X, E)>0$, $h^{0}(X, E(-D))=0$ for every divisor $D>0$ are given by our construction for some integer $t:=c_{2}(E)$ such that $2 \leq t \leq \delta / 2+2$.

Proof of Theorem 2. Let E be a rank 2 ACM vector bundle on X. Fix $H \in \eta_{+}$and let A be the rank 1 subsheaf of E such that $w:=A \cdot H$ is maximal. The maximality of the integer w and the ampleness of H gives that A is saturated in E. Since $\operatorname{det}(E) \cong \mathcal{O}_{X}$, we get an exact sequence

$$
\begin{equation*}
0 \rightarrow A \rightarrow E \rightarrow \mathcal{I}_{Z} \otimes A^{*} \rightarrow 0 \tag{4}
\end{equation*}
$$

with Z a zero-dimensional subscheme of X and $c_{2}(E)=$ length $(Z)-A^{2}$. Since $h^{1}(X, E)=0$, we get $h^{1}\left(X, \mathcal{I}_{Z} \otimes A^{*}\right) \leq h^{2}(X, A)$ and $h^{1}(X, A) \leq h^{0}\left(X, \mathcal{I}_{Z} \otimes A^{*}\right)$. Serre duality gives $h^{2}(X, A)=h^{0}\left(X, A^{*}\right)$.
(a) Here we assume $w=0$. Since H is ample, $h^{0}\left(X, A^{*}\right)>0$ if and only if $A \cong \mathcal{O}_{X}$. Hence $h^{1}\left(X, \mathcal{I}_{Z} \otimes A^{*}\right)=0$ if $A \neq \mathcal{O}_{X}$. For the same reason $h^{0}(X, A)+$ $h^{0}\left(X, A^{*}\right)>0$ if and only if $A \cong \mathcal{O}_{X}$. First assume $A \neq \mathcal{O}_{X}$. We get $h^{1}\left(X, \mathcal{I}_{Z} \otimes\right.$ $\left.A^{*}\right)=0$. Hence $h^{1}\left(X, A^{*}\right)=0$ and length $(Z) \leq h^{0}\left(X, A^{*}\right)=0$. Thus E is an extension of A^{*} by A if $A \neq \mathcal{O}_{X}$.
(a1) Here we assume $A \neq \mathcal{O}_{X}$ and $h^{1}\left(X, A^{\otimes 2}\right)>0$. If

$$
h^{0}\left(X, A^{\otimes 2}\right)=h^{2}\left(X, A^{\otimes 2}\right)=0
$$

then Riemann-Roch gives $A^{2}<0$ and hence $A^{2} \in\{-4,-2\}$. Now assume

$$
h^{0}\left(X, A^{\otimes 2}\right)+h^{2}\left(X, A^{\otimes 2}\right)>0
$$

and that X has Property (+). Since X has no curve with negative self-intersection, every effective divisor is nef. Since $h^{0}\left(X, A^{\otimes 2}\right)+h^{2}\left(X, A^{\otimes 2}\right)>0$ and $\omega_{X} \cong \mathcal{O}_{X}$, we get that $A^{\otimes 2}$ is nef. Hence $A^{2} \geq 0$. Assume $A^{2}>0$. Riemann-Roch gives that either $h^{0}(X, A)>0$ or $h^{0}\left(X, A^{*} \otimes \omega_{X}\right)>0$. Hence either $h^{0}\left(X, A^{\otimes 2}\right)>0$ or $h^{0}\left(X, A^{\otimes-2}\right)>0$. Since $w=0$ any of these inequalities implies $A^{\otimes 2} \cong \mathcal{O}_{X}$, contradicting the assumption on A and the fact that $\operatorname{Pic}(X)$ has no torsion.
(a2) Here we assume $h^{1}\left(X, A^{\otimes 2}\right)=0$. Hence (4) splits. Hence both A and A^{*} are ACM.
(a3) Here we assume $A \cong \mathcal{O}_{X}$. Since length $(Z) \leq h^{0}\left(X, A^{*}\right)=1, Z$ is a point. Since $\omega_{X} \cong \mathcal{O}_{X}$ and Z is a point, we get the Cayley-Bacharach condition is not satisfied and hence the middle term of any extension (4) with \mathcal{O}_{X} and Z a point is not locally free, contradiction. Hence $Z=\emptyset$ if $w=0$.
(b) Here we assume $w>0$. Hence $h^{0}\left(X, A^{*}\right)=0$. Serre duality gives $h^{2}(X, A)=0$. Hence $Z=\emptyset$ and $h^{1}(X, A)=h^{1}\left(X, A^{*}\right)=0$. Thus RiemannRoch gives $h^{0}(X, A)=A^{2} / 2+2$ and $h^{2}\left(X, A^{*}\right)=A^{2} / 2+2$. Since $h^{0}\left(X, A^{*}\right)=$ $h^{2}(X, A)=0,(4)$ gives $h^{0}(X, E)=h^{0}(X, A)$ and $h^{2}(X, E)=h^{2}\left(X, A^{*}\right)$. Since $Z=\emptyset$, (4) gives $c_{2}(E)=-A^{2}$. Since $\operatorname{det}(E) \cong \mathcal{O}_{X}, \chi(E)=-c_{2}(E)+4=A^{2}+4$. Since $h^{1}(X, E)=0, \chi(E) \geq 0$. Hence $A^{2} \geq-4$. Riemann-Roch gives that A^{2} is an even integer.
(b1) Here we assume $h^{1}\left(X, A^{\otimes 2}\right)>0$. As in case (a1) we get $-4 \leq A^{2} \leq-2$ if $h^{0}\left(X, A^{\otimes 2}\right)=h^{2}\left(X, A^{\otimes 2}\right)=0$. Now assume $A^{2} \geq 0$, that X has Property $(+)$ and that X is not quasi-elliptic. Riemann-Roch gives $h^{0}\left(X, A^{\otimes 2}\right)+h^{2}\left(X, A^{\otimes 2}\right)>0$. Hence either $\left.h^{0}\left(X, A^{\otimes 2}\right)\right)>0$ or $h^{0}\left(X, A^{\otimes-2} \otimes \omega_{X}\right)>0$. The latter inequality cannot occur, because $w>0$. Hence $A^{\otimes 2}$ is effective. Since X has Property (+), $A^{\otimes 2}$ is nef. Hence the assumption $h^{1}\left(X, A^{\otimes 2}\right)>0$ and (assuming X not quasielliptic) the vanishing theorem [8], Cor. 8 , for nef and big line bundles gives $A^{2}=0$.
(b2) Here we assume $h^{1}\left(X, A^{\otimes 2}\right)=0$. Hence (4) splits. Hence both A and A^{*} are ACM.
(c) Here we assume $w<0$. Hence E is H-stable in the sense of Mumford and Takemoto. Since $c_{1}(E) \cdot H=0$, this implies $h^{0}(X, E)=0$. Since E is H-stable, E^{*} is H-stable. Hence $h^{0}(X, E)=0$, i.e. $h^{2}(X, E)=0$. Since E is ACM, RiemmanRoch gives $-c_{2}(E)+4=\chi(E)=0$, i.e. $-A^{2}+\operatorname{length}(Z)=4$. Riemann-Roch for A gives that A^{2} is an even integer. Since $w<0, h^{2}(X, A)=0$. Hence $h^{1}(X, E)=0$ implies $h^{1}\left(X, \mathcal{I}_{Z} \otimes A^{*}\right)$. Hence $h^{1}\left(X, A^{*}\right)=0$ and $h^{0}\left(X, A^{*}\right) \geq \operatorname{length}(Z)$. Thus $Z=\emptyset$ if $h^{0}\left(X, A^{*}\right)=0$
(c1) Here we assume that X has Property (+). Assume $Z \neq \emptyset$. Hence $h^{0}\left(X, A^{*}\right)>0$. Since X has Property $(+), A^{2} \geq 0$. Hence if X has Property $(+)$ and $Z \neq \emptyset$, then length $(Z)=4$ and $A^{2}=0$. However, $h^{1}\left(X, A^{*}\right)=0$, $h^{2}\left(X, A^{*}\right)=h^{0}(X, A)=0$ and $A^{2}=0$ give $h^{0}\left(X, A^{*}\right)=2<4=\operatorname{length}(Z)$, contradiction. Since $Z=\emptyset, c_{2}(E)=-A^{2}=4$.
Remark 4. Let X be a $K 3$-surface such that $\operatorname{Pic}(X) \cong \mathbb{Z}$. Let δ be the selfintersection of a generator of $\operatorname{Pic}(X)$. Every line bundle on X is ACM. Hence the proof of Theorem 2 shows that a rank 2 vector bundle on X such that $\operatorname{det}(E) \cong \mathcal{O}_{X}$ is ACM if and only if one of the following conditions is satisfied:
(i) $E \cong A \otimes A^{*}$ for some $A \in \operatorname{Pic}(X)$;
(ii) there is an integer t such that $2 \leq t \leq \delta / 2+2$ such that E is one of the vector bundles E_{t} described in Example 2.
Proposition 2. Let X be a projective K3 surface. The following conditions are equivalent:
(i) $\operatorname{Pic}(X) \cong \mathbb{Z}$;
(ii) every line bundle on X is ACM;
(iii) every line bundle on X is WACM;
(iv) every ample line bundle on X is $A C M$;
(v) every ample line bundle on X is WACM.

Proof. The first part of Remark 4 gives that (i) implies (ii). Hence it is sufficient to show that if $\rho \geq 2$, then there is an ample line bundle on X which is not WACM. Since $\rho \geq 2$, the intersection form on $\operatorname{Pic}(X)$ is not definite positive by Hodge Index theorem. Hence there is $A \in \operatorname{Pic}(X)$ such that $A^{2}<0$. Set $B:=A^{\otimes 2}$. Since A^{2} is an even integer $B^{2} \leq-4$. Hence $\chi(B)=B^{2}+2<0$. Hence $h^{1}(X, B)>0$. Since
every Cartier divisor on a projective variety is the difference of two very ample divisors, there are ample R, L such that $B:=R \otimes L^{*}$. Since $h^{1}(X, B)>0, R$ is not WACM.

Proof of Theorem 3. Since X has Property (++), it is not quasi-elliptic and hence we may use Kodaira vanishing on X ([8], Cor. 8). Take E given by an extension (4). We saw in the proof of Theorem 2 that $Z=\emptyset$ and hence $c_{2}(E)=$ $-A^{2}$. First assume $A^{2}=0$, i.e. $c_{2}(E)=0$. Since $\chi(A)=2$, either A or A^{*} must have a section. Since $A^{2}=0$ and X has Property $(++)$, we get $A \cong \mathcal{O}_{X}$ and hence $E \cong \mathcal{O}_{X}^{\oplus}$. Now assume $A^{2}>0$, i.e. $c_{2}(E)<0$. Hence either A is ample or A^{*} is ample. In both cases we have $h^{1}\left(X, A^{\otimes 2}\right)=0$ by Kodaira vanishing and Serre duality. Hence $E \oplus A \oplus A^{*}$, i.e. we are in case (ii).

References

[1] F. Catanese, Footnotes to a theorem of I. Reider, Algebraic Geometry Proceedings, L'Aquila 1988, 67-74, Lect. Notes in Math. 1417, Springer, Berlin, 1990.
[2] F. R. Cossec, Projective models of Enriques surfaces, Math. Ann. 265 (1983), 283-334.
[3] F. R. Cossec, On the Picard group of Enriques surfaces, Math. Ann. 271 (1985), 577-600.
[4] F. R. Cossec and I. V. Dolgacev, Enriques surfaces I, Birkhäuser, Boston, 1989.
[5] R. Hartshorne, Ample subvarieties of algebraic varieties, Lect. Notes in Math. 156, Springer, Berlin, 1970.
[6] M. Casanellas and R. Hartshorne, ACM bundles on cubic hypersurfaces, arXiv:math/0801.3600.
[7] T. Johsen and A. L. Knutsen, K3 projective models in scrolls, Lect. Notes in Math. 1842, Springer, Berlin, 2004.
[8] N. I. Sheperd-Barron, Unstable vector bundles and linear systems on surfaces in characteristic p, Invent. Math. 106 (1991), no. 2, 243-262.

[^0]: 1991 Mathematics Subject Classification. 14J28; 14J60.
 Key words and phrases. vector bundle; ACM vector bundle; arithmetically Cohen-Macaulay vector bundle; Enriques surface; K3-surface.

 The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

