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OTHER REPRESENTATIONS OF THE RIEMANN ZETA

FUNCTION AND AN ADDITIONAL REFORMULATION OF THE

RIEMANN HYPOTHESIS

STEFANO BELTRAMINELLI AND DANILO MERLINI

Abstract. New expansions for some functions related to the Zeta function
in terms of the Pochhammer polynomials are given (coe�cients bk, dk and

d̂k). In some formal limit our expansion bk obtained via the alternating series
gives the regularized expansion of Maslanka for the Zeta function. The real
and the imaginary part of the function on the critical line is obtained with a
good accuracy up to I(s) = t < 35.

Then, we give the expansion (coe�cient d̂k) for the derivative of
ln [(s− 1)ζ(s)]. The critical function of the derivative, whose bounded values
for R(s) > 1

2
at large values of k should ensure the truth of the Riemann

Hypothesis (RH), is obtained either by means of the primes or by means of
the zeros (trivial and non-trivial) of the Zeta function. In a numerical exper-
iment performed up to high values of k i.e. up to k = 1014 we obtain a very
good agreement between the two functions, with the emergence of fourteen
oscillations with stable amplitude.

1. Introduction

Lately there has been new interest in the study of the expansion of the Zeta
function via the Pochhammer polynomials. This is related to the original idea of
Riesz [17] and of Hardy-Littlewood [13] at the beginning of the last century. In
pioneering works, Maslanka obtained a regularized expansion for the Zeta function
(with coe�cients Ak) [14] and Baez-Duarte an expansion for the reciprocal of the
Zeta function (with coe�cients ck) for the Riesz case [2, 4]. Other cases of interest
have also recently been studied [1, 8, 9, 10, 15, 18]. As pointed out in [4], the discrete
version by means of the Pochhammer polynomials Pk(s), where s = σ + it is the
complex variable and k is an integer, has advantages especially in the context of
numerical experiments in connection with some �kind of veri�cation� that supports
the RH may be true.

In this work we �rst derive a new expansion for the Zeta function in terms of
the Pochhammer polynomials via the alternating series (with new coe�cients bk).
In some formal limit, a connection with the expansion of Maslanka is also obtained
in Section 2. Our expansion is then studied numerically on the critical line where
a good agreement with the real function is obtained up to I(s) = t < 35, with the
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emergence of the �rst few low zeros. After this value of t, a divergence possibly of
numerical nature set on.

In Section 3 we then obtain the expansion for the function ln
[
(1− 21−s)ζ(s)

]
(with new coe�cients dk) as well as for the derivative of ln [(s− 1)ζ(s)] (with new

coe�cients d̂k) in terms of the two parameters α and β, already introduced in our
previous works [5, 6, 7]. The critical function for the derivative (whose boundedness
at large k would �ensure� the truth of the RH) is then obtained either with the
primes or with the trivial and non-trivial zeros of the Zeta function.

In the numerical experiment for the special case α = 9
2 and β = 4 up to high

values of k, i.e. k = 1014, the results for the two functions are in very good
agreement, both with the emergence of the same fourteen oscillations of stable
amplitude of about 0.01 (Section 4).

2. Zeta function representation via the alternating series

In this section we derive a formula for (1 − 21−s)ζ(s) similar to the one of

Maslanka for (s− 1)ζ(s) [14] and of Baez-Duarte for [ζ(s)]−1
[2, 4].

Here the starting series is convergent for R(s) = σ > 0 and the formula is
obtained still in terms of the so called Pochhammer polynomials of degree k, in the
complex variable s = σ + it.

(2.1) Pk(s) =
k∏
r=1

(
1− s

r

)
∀k ∈ N∗ and P0(s) = 1

We will also use a family of functions with two parameters (α and β) as considered
already in our recent works [5, 6, 7]. Since the alternating series is given by:

(2.2)
(
1− 21−s) ζ(s) =

∞∑
n=1

(−1)n−1

ns
∀R(s) = σ > 0

we have using the trick as in [2] that:(
1− 21−s) ζ(s) =

∞∑
n=1

(−1)n−1

nα

(
1−

(
1− 1

nβ

)) s−α
β

=
∞∑
n=1

(−1)n−1

nα

∞∑
k=0

(−1)k
(
1− 1

nβ

)k( s−α
β

k

)
Since

(−1)k
( s−α

β

k

)
= (−1)k

k!

(
s−α
β + 1− 1

)
· · ·
(
s−α
β + 1− k

)
=

k∏
r=1

(
1−

s−α
β +1

r

)
= Pk( s−αβ + 1)

we obtain:

(2.3)

(
1− 21−s) ζ(s) =

∞∑
k=0

Pk( s−αβ + 1)
∞∑
n=1

(−1)n−1

nα

(
1− 1

nβ

)k
=
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

) ∞∑
n=1

(−1)n−1

nα+βj

Since from (2.2) (
1− 21−(α+βj)

)
ζ(α+ βj) =

∞∑
n=1

(−1)n−1

nα+βj
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substitution in (2.3) gives:
(2.4)(

1− 21−s) ζ(s) =
∞∑
k=0

Pk

(s− α
β

+ 1
) k∑
j=0

(−1)j
(
k

j

)(
1− 21−(α+βj)

)
ζ(α+ βj)

With the de�nition

(2.5) bk :=
k∑
j=0

(−1)j
(
k

j

)(
1− 21−(α+βj)

)
ζ(α+ βj)

(2.4) becomes:

(2.6)
(
1− 21−s) ζ(s) =

∞∑
k=0

bkPk

(s− α
β

+ 1
)

where P0( s−αβ + 1) = 1 and b0 = (1− 21−α)ζ(α).
The series above, is expected to represent (1− 21−s)ζ(s) for s in some compact

subset of the plane as for the Maslanka case [14]. In that case, the central point has
been investigated and elucidated by Baez-Duarte [3]. Here many choices of α and
β are possible. For α = β = 2 we have the Riesz case [17] and it is the analogon to
the regularized version of Maslanka but the representation of the Zeta function is
not the same. For α = 1+δ (δ ↓ 0) and β = 2 we obtain the Hardy-Littlewood case
[13] which was also discussed numerically in a di�erent way using other polynomials
[12].

In fact, from Lemma 2.3 of Baez-Duarte [4] which states that at large k:

(2.7) |Pk(s)| ≤ Ck−R(s)

where C is a constant depending on |s|, we obtain here that:∣∣∣∣Pk(s− αβ + 1
)∣∣∣∣ ≤ Ck−( R(s)−α

β +1)

We thus suspect and expect that the above series represents (1 − 21−s)ζ(s) for

all R(s) > 1
2 + δ, δ > 0 if we assume |bk| ≤ Dk−γ with γ ≥ α−1/2−δ

β at large values

of k and for some constant D. In fact with this assumption we have that:∣∣(1− 21−s) ζ(s)
∣∣ ≤ ∞∑

k=0

∣∣∣bkPk( s−αβ + 1)
∣∣∣ ≤ const.

∞∑
k=0

k−
α−1/2−δ

β k−( R(s)−α
β +1)

≤ const.
∞∑
k=0

k−(1+
R(s)−1/2−δ

β ) <∞

if R(s) > 1
2 + δ.

For α = β = 2 (case of Riesz) we should have |bk| ≤ Dk−
3
4 +ε. For the case α = 1

and β = 2 (case of Hardy-Littlewood) we should have |bk| ≤ Dk−
1
4 +ε. Another

case of interest is the one where α = 3
2 and β = 1. In this case one should have

|bk| ≤ Dk−1+ε.
Of interest also, is the limiting case of large values of β, where barely bk should

behave as |bk| ≤ D.
For a strong argument (a Theorem) in favour of the validity of the Maslanka

representation of (s−1)ζ(s) in some regions of the complex plane (compact subsets),
the reader should consult the work of Baez-Duarte [3] already mentioned and it is
expected that using the same methods, the proof of (2.6) may be obtained for
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all R(s) > 1
2 . Here, for our series we limit ourselves to a numerical analysis just

illustrating the kind of accuracy of some representations.

Remark 2.1. Let us consider the Riesz case α = β = 2. We can write:(
1− e(1−s) ln 2

)
ζ(s) =

∞∑
k=0

Pk

(s
2

) k∑
j=0

(−1)j
(
k

j

)(
1− e−(1+2j) ln 2

)
ζ(2 + 2j)

and using Taylor's expansion of ex, we obtain:

(2.8) (s− 1) ζ(s) =
∞∑
k=0

AkPk

(s
2

)
where

(2.9) Ak =
k∑
j=0

(−1)j
(
k

j

)
(2j + 1) ζ(2j + 2)

i.e. the representation obtained originally by a di�erent method by Maslanka in a
pioneering work [14]. We remark that (2.8) and (2.9) should not be considered as an
approximation of our formulas (2.5) and (2.6) and vice versa. (2.5), (2.6) and (2.8),
(2.9) are simply two di�erent representations of functions related to the Riemann
Zeta function, the �rst one given by (s− 1)ζ(s), the second one by (1− 21−s)ζ(s).

As an example, for s = σ with σ in [0, 1], both representations give a good
description of the real function ζ(σ) as may easily be computationally checked. We
omit here the details.

We now proceed to obtain a representation of ζ(s) possibly correct on the critical
line s = 1

2 + it, with the help of (2.5) and (2.6), in which we are free to set α = 1
2

and β = i. Then:

(2.10)
(

1− 2
1
2−it

)
ζ
(1

2
+ it

)
=
∞∑
k=0

bkPk(t+ 1)

where now

(2.11) bk =
k∑
j=0

(−1)j
(
k

j

)(
1− 2

1
2−ij

)
ζ
(1

2
+ ij

)
We now check the series in (2.10) restricting k up to 20 for t ≤ 18 and up to

50 for t > 18. We compare the result with the exact functions R
(
(1− 2s)ζ(s)

)
and I

(
(1− 2s)ζ(s)

)
, for s = 1

2 + it with t up to 40. The plots are given below.
The numerical results are satisfactory until t ∼= 35. We obtain a good qualitative
approximation with the emergence of the �rst �ve non-trivial zeros (ti). In Table 1
we obtained the calculated ti by means of the function �FindRoot� in the software
package Mathematica.

Remark 2.2. If instead of the value β = i we set β = i
m (m integer), then it may

be veri�ed that (2.6) gives for t < k and t = n
m (n integer) the same values as

the true function ζ( 1
2 + it). For these cases more analytical as well as numerical

studies are needed. Moreover as k is increasing, we note the emergence of strange
oscillations propagating from t = 0 away. We argue that numerical complexity set
on at this point and we have at the moment no answer to this problem. Researchers
are invited to give more elucidations and results in this direction.



AN ADDITIONAL REFORMULATION OF THE RH 297

Table 1. The �rst �ve non-trivial zeros ti calculated by means of

the real part of
20(50)∑
k=0

bkPk(t+ 1)

ti, see Odlyzko [16] calculated ti
t1 14.13472514173469 14.05988000296
t2 21.02203963877155 21.02212625771
t3 25.01085758014569 25.01083570045
t4 30.42487612585951 30.39283277445
t5 32.93506158773919 32.99863566475

10 20 30 40
t

-1

1

2

3

Figure 1. The plot of the real part of
20(50)∑
k=0

bkPk(t + 1) [red] vs.

R
(
(1− 2s)ζ(s)

)
[blue]

Remark 2.3. The right hand side of (2.10) is a polynomial in the variable t with
complex coe�cients. It can be seen as a �characteristic polynomial� associated with
some matrix whose coe�cients depend on the b(k) i.e. on the values of the Zeta
function at integer height j on the critical line. The eigenvalues of the matrix should
contain a subset given by the non-trivial zeros of the Zeta function. This may be
seen on Figure 1 and on Figure 2 for the �rst few low zeros where t ≤ 33.

This concludes the �rst part of our work. Below, in the second part we develop
two new representations of the functions ln

[
(1− 21−s)ζ(s)

]
and d

ds ln [(s− 1)ζ(s)]
which may possibly constitute a satisfactory approximation to the exact functions.

3. A representation for the logarithm of the Zeta Function and an

additional criterion for the truth of the RH

We will start as before but instead of writing ζ(s) as a sum, i.e. ζ(s) =
∞∑
n=1

1
ns , we will use the Euler product formula to derive a new representation for

ln
[
(1− 21−s)ζ(s)

]
, which of course should be carefully investigated by means of
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10 20 30 40
t

-2

-1

1

2

Figure 2. The plot of the imaginary part of
20(50)∑
k=0

bkPk(t+1) [red]

vs. I
(
(1− 2s)ζ(s)

)
[blue]

some numerical experiments. Thus:

(3.1) ln
[(

1− 21−s) ζ(s)
]

= ln
[(

1− 21−s) ∏
p prime

1
1− p−s

]
∀R(s) > 1

For any prime p, we have:

ln
(
1− p−s

)
= −

∞∑
n=1

p−ns

n

so that introducing the parameters α and β as before we have that:
∞∑
n=1

p−αn

n

(
1−

(
1− p−βn

)) s−α
β =

∞∑
n=1

p−αn

n

∞∑
k=0

(−1)k
(
1− p−βn

)k( s−α
β

k

)
=
∞∑
k=0

Pk( s−αβ + 1)
∞∑
n=1

1
n

k∑
j=0

(−1)j
(
k
j

)
p−(α+βj)n

=
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

)
ln
(
1− p−(α+βj)

)
The same treatment for the function ln

(
1− 21−s), gives:

ln
(
1− 21−s) =

∞∑
k=0

Pk

(s− α
β

+ 1
) k∑
j=0

(−1)j
(
k

j

)
ln
(

1− 21−(α+βj)
)

where Pk are still the Pochhammer polynomials.
Finally, the representation of ln

[
(1− 21−s)ζ(s)

]
, we propose is given by:

(3.2) ln
[(

1− 21−s) ζ(s)
]

=
∞∑
k=0

dkPk

(s− α
β

+ 1
)

where now:

(3.3) dk :=
k∑
j=0

(−1)j
(
k

j

)
ln
[(

1− 21−(α+βj)
)
ζ(α+ βj)

]
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Remark 3.1. Another formal derivation of the above equations is the following:

ln
[(

1− 21−s) ζ(s)
]

= ln

[ ∞∑
n=1

(−1)n−1

ns

]
Supposing now that the right hand side may be given as an unknown series

∞∑
r=1

ar
rs we then have:

∞∑
r=1

ar
rα

(
1−

(
1− 1

rβ

)) s−α
β =

∞∑
k=0

Pk( s−αβ + 1)
∞∑
r=1

ar
rα

(
1− 1

rβ

)k
=
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

) ∞∑
r=1

ar
rα+βj

=
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

)
ln
( ∞∑
n=1

(−1)n−1

nα+βj

)
which coincide with (3.2) and (3.3), obtained with the Euler product formula for
R(s) > 1. (3.2) with (3.3), is the new formula possibly representing the logarithm
of the Zeta function in terms of the two parameters Pochhammer polynomials. To
the best of our knowledge the above representation is new and it is our aim to carry
out some numerical investigations in the sequel in order to support its validity also
in some compact subset of the critical strip.

We now investigate the representation of the derivative of ln [(s− 1)ζ(s)]:

(3.4)
d

ds
ln [(s− 1) ζ(s)] =

1
s− 1

+
ζ ′(s)
ζ(s)

Then with ζ(s) =
∏

p prime

1
1−p−s we obtain (R(s) > 1):

ζ′(s)
ζ(s) = −

∑
p

d
ds ln (1− p−s) = −

∑
p

1
1−p−s

d
ds

(
1− e−s ln p

)
= −

∑
p

p−s

1−p−s ln p = −
∑
p

ln p
∞∑
q=1

1
psq

Introducing as above the Pochhammer polynomials we obtain further:

ζ′(s)
ζ(s) = −

∑
p

ln p
∞∑
q=1

1
pqα

(
1−

(
1− 1

pqβ

)) s−α
β

= −
∑
p

ln p
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

) ∞∑
q=1

1
pq(α+βj)

=
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

) ∞∑
q=1

(
−
∑
p

1
pq(α+βj) ln p

)
=
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

)
∂
∂α

( ∞∑
q=1

1
q

∑
p

1
pq(α+βj)

)
=
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

)
∂
∂α

(
−
∑
p

ln
(

1− 1
pα+βj

))
=
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

)
∂
∂α ln

(∏
p

1
1−p−(α+βj)

)
=
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

)
∂
∂α ln (ζ(α+ βj))
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For 1
s−1 , using

1
s−1=

∫∞
0
e−λ(s−1)dλ we have similarly:

1
s−1 =

∫∞
0
eλ 1

eλs
dλ =

∫∞
0

eλ

eλα

(
1−

(
1− 1

eλβ

)) s−α
β dλ

=
∫∞

0
eλ
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

)
1

eλ(α+βj) dλ

=
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

) ∫∞
0
e−λ(α+βj−1)dλ

=
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

)
1

α+βj−1

=
∞∑
k=0

Pk( s−αβ + 1)
k∑
j=0

(−1)j
(
k
j

)
∂
∂α ln (α+ βj − 1)

Thus, along these lines we obtain:

(3.5)
d

ds
ln [(s− 1) ζ(s)] =

∞∑
k=0

d̂kPk

(s− α
β

+ 1
)

where:

(3.6) d̂k =
k∑
j=0

(−1)j
(
k

j

)
∂

∂α
ln [(α+ βj − 1) ζ(α+ βj)]

From the formula (7) in [11], where ρ represents a non-trivial zero of the Zeta
function, i.e.:

1
s−1 + ζ′(s)

ζ(s) = 1
s−1 −

s
s−1 +

∑
ρ

1
ρ +

∑
ρ

1
s−ρ −

∞∑
n=1

1
2n +

∞∑
n=1

1
s+2n + ζ′(0)

ζ(0)

= ζ′(0)
ζ(0) − 1 +

∑
ρ

1
ρ −

∞∑
n=1

1
2n +

∑
ρ

1
s−ρ +

∞∑
n=1

1
s+2n

Setting C = ζ′(0)
ζ(0) − 1, this equation applied to s = α+ βj in (3.6) gives:

d̂k =
k∑
j=0

(−1)j
(
k
j

)(
C +

∫∞
0

(∑
ρ
e−λ(α+βj−ρ) + e−λρ

+
∞∑
n=1

e−λ(α+βj+2n) − e−λ2n
)
dλ
)

=
∫∞

0

∑
ρ

(
e−λ(α−ρ)(1− 1

eλβ

)k + e−λρ
(
1− 1

eλβ

)k
δk,0

)
dλ

+
∫∞

0

( ∞∑
n=1

e−λ(α+2n)
(
1− 1

eλβ

)k − e−λ2n
(
1− 1

eλβ

)k
δk,0

)
dλ

We consider only k > 0. Now we make the variable change e−λβ = x and �nally
we obtain:

d̂k = 1
β

(∫ 1

0
(1− x)k+1−1∑

ρ
x
α−ρ
β −1dx+

∫ 1

0
(1− x)k+1−1

∞∑
n=1

x
α+2n
β −1dx

)
= 1

β

(∑
ρ
B(α−ρβ , k + 1) +

∞∑
n=1

B(α+2n
β , k + 1)

)
where B(x, y) = Γ(x)Γ(y)

Γ(x+y) is the Beta function. Thus for large k we can write:

(3.7) d̂k =
1
β

∑
ρ

Γ
(α− ρ

β

)
k−

α−ρ
β +

1
β

∞∑
n=1

Γ
(α+ 2n

β

)
k−

α+2n
β
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For the critical function (see the de�nition in [7] corresponding to R(s) = σ we
have an analogous expression to the Baez-Duarte formula for the ck appearing in
the expansion of ζ(s)−1

[2, 4]:

(3.8) k
α−σ
β d̂k =

1
β

∑
ρ

Γ
(α− ρ

β

)
k
ρ−σ
β +

1
β

∞∑
n=1

Γ
(α+ 2n

β

)
k−

2n+σ
β =: ψ1(k)

On the other hand we can express d̂k and then the critical function with a second
formula:

d̂k =
1
β

Γ
(α− 1

β

)
k−

α−1
β −

∑
p prime

ln p
∞∑
q=1

1
pαq

(
1− 1

pβq

)k
(3.9)

(3.10) k
α−σ
β d̂k =

1
β

Γ
(α− 1

β

)
k

1−σ
β − k

α−σ
β

∑
p prime

ln p
∞∑
q=1

1
pαq

(
1− 1

pβq

)k
=: ψ2(k)

In fact (see above) the Pochhammer expansion for 1
s−1 is:

1
s− 1

=
∞∑
k=0

skPk

(s− α
β

+ 1
)

where

sk =
∫ ∞

0

e−λ(α−1)(1− e−λβ
)k
dλ

which for large k behaves as 1
βΓ(α−1

β )k−
α−1
β . Indeed with the substitution e−λβ = x

we obtain:

sk =
1
β

∫ 1

0

x
α−1
β −1(1− x)

k
dx =

1
β

∫ 1

0

x
α−1
β −1(1− x)

k+1−1
dx =

1
β
B
(α− 1

β
, k+1

)
It is interesting to note that one can express the critical function in terms of the

zeros of the Zeta function (3.8) or in terms of the primes (3.10). We will investigate
numerically these two functions for the case α = 9

2 , β = 4, σ = 1
2 , although we

derived (3.8) only for σ > 1.

4. Numerical experiments

As a test of the goodness of (3.2) we draw in Figure 3 the plots of the function
ln
[
(1− 21−σ)ζ(σ)

]
and of its polynomial representation in the interval σ ∈ [−1, 1[.

Figure 3 shows a good match between them also in the �critical real interval� [0, 1].
We set α = 2, β = 2 and k = 50.

In the next two �gures we present the results of the numerical experiment per-
formed on our representation (3.5) for the case α = 9

2 and β = 4. Using formulae

(3.8) and (3.10), we calculated the critical functions ψ1 and ψ2 for R(z) = σ = 1
2 .

In our calculations we considered only the �rst 10 non-trivial zeros of the Zeta
function, the �rst 20 trivial ones and the �rst 5'000 primes. For comparison's pur-
pose we also did the calculations with 2'000 primes. Furthermore using the usual
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-1 -0.5 0.5 1
Σ

-1.4

-1.2

-0.8

-0.6

-0.4

Figure 3. The function ln
[
(1− 21−σ)ζ(σ)

]
[blue] and its polyno-

mial representation [red]

substitution x = log k, ψ1 and ψ2 become:

ψ1(x) =

10∑
j=1

Γ
(
1− itj

4

)
e
xitj

4 +
10∑
j=1

Γ
(
1 + itj

4

)
e−

xitj
4 +

20∑
n=1

Γ
(

1
2n+ 9

8

)
e−x( 1

2n+ 1
8 )

4

ψ2(x) =
1
4

Γ
(7

8

)
e
x
8 − ex

∑
5000

primes

ln p
50∑
q=1

p−
9
2 qe
− ex

p4q

where tj is the imaginary part of the j-th non-trivial zero.
We argue ψ2 should approach ψ1. The convergence is surprising. The computa-

tions presented in Figure 4 and Figure 5 indicate that the qualitative and quanti-
tative agreement between the two functions is very good in the range 2.5 ≤ x ≤ 33
(15 ≤ k ≤ 2.14644× 1014).

5 10 15 20 25 30 35 40
log k

-0.01

0.01

0.02

0.03

Ψ1

Figure 4. The critical function calculated with the zeros of the
Zeta function (ψ1), using the �rst 10 non-trivial zeros and the �rst
20 trivial ones
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5 10 15 20 25 30 35 40
log k

-0.01

0.01

0.02

0.03

Ψ2

Figure 5. The critical function calculated with the primes (ψ2):
2000 primes [red] and 5000 primes [blue]

Remark 4.1. We observe that as the number of primes increases from 2'000 to 5'000
ψ2 becomes identical to ψ1 for greater values of k. So we suspect that as the number
of primes increases, ψ1 and ψ2 would coincide for larger and larger values of k. So
there is some evidence that the two functions represent the same mathematical
object. This fact, which to the best of our knowledge is new, should deserve further
studies.

It is interesting to study the single contribution of a prime to the critical function
ψ2. In Figure 6 we computed the contributions of the 10th prime (p = 29), of the
50th prime (p = 229) and of the 100th prime (p = 541), all the calculations were
performed until q = 100. The computations indicate that not only the contributions
decrease with increasing p but also that large primes give in fact a contribution only
at large values of k.

5 10 15 20 25 30
log k

-0.20

-0.15

-0.10

-0.05

contribution

to Ψ2

Figure 6. The contribution to the critical function ψ2 of the
primes p = 29 [blue], p = 229 [red] and p = 541 [green]

Remark 4.2. A �veri�cation� for the truth of the RH using the representation of the
function (3.4) by means of the Pochhammer polynomials may be given as follows.
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Assume that d̂k (either with the primes or with the zeros of the Zeta function)

decays as d̂k <
D
kγ with γ = α−1/2

β and some constant D; in fact this assumption is

equivalent to the RH (see [4] and [6]). Then we have:

(4.1)

∣∣∣∣ dds ln [(s− 1) ζ(s)]
∣∣∣∣ <

∣∣∣∣∣
∞∑
k=1

C
1

k
σ−α
β +1

1

k
α−1/2
β

∣∣∣∣∣ < Cζ
(

1 +
σ − 1/2

β

)
So the function would be bounded for σ > 1

2 and there would be no zero with

real part greater then 1
2 . In the same way the critical function ψ should behaves

like:

ψ(σ) = k
α−σ
β dk <

D

k
σ−1/2
β

For σ = 1
2 we have no criteria but it seems (Figure 4) that the critical function

ψ( 1
2 ) is also bounded. We veri�ed numerically the bound given by (4.1) at σ =

0.6, 0.55, 0.525 where we found that D is about 9.5.

Remark 4.3. Now, suppose that ψ(σ′) is bounded for some σ′ > 1
2 , then since

ψ(σ) = ψ(σ′)k
σ′−σ
β

this would indicate that if there is no zero at σ′ then there is also no zero at σ.
Thus it would be important to study ψ for example in the region σ > 1 where it is
known that there are no zeros and where the primes (ψ2) as well as the zeros (ψ1)
can be used.

5. Conclusions

In this work we have found some new representations of functions related to the
Riemann Zeta function in terms of the Pochhammer polynomials, i.e. for the Zeta
function via the alternating series, for (1 − 21−s)ζ(s), for ln

[
(1− 21−s)ζ(s)

]
and

for the derivative of ln [(s− 1)ζ(s)].

(1) A numerical experiment for the �rst function give satisfactory results both
for the real part as well for the imaginary part even on the critical line
R(s) = 1

2 (we have used the values α = 1
2 , β = i and t up to t = I(s) < 35).

(2) In a formal limit of our representation (2.6) for the special case α = β = 2
we obtain Maslanka's representation of (s− 1)ζ(s).

(3) For the expansion of the derivative of the function ln [(s− 1)ζ(s)] in terms of
the Pochhammer polynomials Pk(s) we have found two expressions (ψ1 and
ψ2) for the so called critical function: ψ1 in terms of the trivial as well as the
non-trivial zeros and ψ2 in terms of the primes. We have then carried out a
numerical experiment which gives a very satisfactory agreements between
the two functions, which up to very high values of k remain bounded. The
existence of absolute upper bounds for the critical functions at k-in�nity
may be considered as being equivalent to the truth of the RH.

(4) The �equality� of ψ1 and ψ2 in the numerical context is intriguing because
we have found a mathematical object related to the Zeta function and
representable by means of the in�nity of the zeros of Zeta as well as the
in�nity of the primes.
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