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MONIKA KOTOROWICZ

1. INTRODUCTION

In this paper we build a family of hierarchical graphs based on the triangle
(Sierpiriski gasket-based graphs) and calculate their important characteristics, such
as average degree, average shortest path length, small-world graph family character-
istics. Then we present stream ciphers defined on a finite automaton corresponding
to this family.

2. BASIC NETWORK CHARACTERISTICS

Our family of graphs {Aj, }ren is generated in an hierarchical way (see [1]). Here
k = 1,2,3,... denotes the level of the hierarchy understood as the step of the
construction. The initial graph A; is the complete graph of order 3. At each step
of the construction we join 3 graphs of level k — 1 (called units) in a way shown in
Figure 1.

FIGURE 1. Construction of the graph As

Each graph has 3 external vertices of special meaning. Units of the same level are
attached to them to form the unit of a higher level. In the figures we denote them
by a, b, c. The rest of vertices are called internal.

The result is a family of Sierpiniski gasket-based graphs {Ag}ren with no loops
and no multiple edges. By Vi and Ej we denote the sets of vertices and edges of
Ay, respectively. One can find the order |Vj| and the size |Ej| of Ag:

3
|Vi| = 5(3]@71 +1), |Bxl=3"
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2.1. Average degree. Let ni(v) stand for the number of edges ending at a vertex
v € V. Clearly, ng(v) = 2 for each external vertex and ny(v) = 4 for each internal
one. So

def 1 3-3+4-(|Vi]—3

which tends to 4 when &k — oo.

2.2. Average shortest-path length. As Figure 2 suggests, it is convenient to in-
troduce the following notations. The graph of level k, k > 1, consists of 3 subgraphs
of level k —1

Ap =A% JUAY JUAS .
Every vertex v € Vi has a label determining its place in the graph

v={a1g...01},a; € {a,b,c}.
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FI1GURE 2. The graph of level 5

FEach symbol corresponds to the choice of the triangle of the previous level. Notice
that every vertex, besides the external ones, has two labels. For example the vertex
v in Figure 2 can be labelled by {bacca} or {bacac}. The distance py(v,~) between
v and v € {ag, bx, cx }, measured in terms of the number of edges along the path in
Ak, is

k—1
; 1 o =
_ -1 _ i ="
pr(v,y) = (1 — 5ak'¥) + ZIQJ (1- 50%-—1’7)? 50471'7 = { 0 a; #7.
=
Let v € A¢_; and w € A}_,. Then the distance between v and w is
pr(v,w) < pr—1(v,b) + pr—1(w, a).
Thus, the average shortest-path length py is

o = Lowevy P W) 0(2")
Val(IVil = 1)
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2.3. Small world graph family. In the last years, small-world networks have
been studied intensively, see [2, 3]. The family of graphs {A;} is a small world
graph family if the diameter of Ay (i. e. the maximal distance between the two
vertices in Ay) scales logarithmically or slower with the graph size, that is,

In our model, one has diamA = 2*~! so it is not the small world graph family.
We need this important information to our application in cryptography.

3. CRYPTOGRAPHICAL APPLICATION ON SIERPINSKI GASKET-BASED GRAPHS

To adapt our model described in previous section to our cryptographical appli-
cation ([4, 5]) we need to make some changes. For every pair of distinct vertices
connected with a simple edge we replace this edge with a pair of directed edges with
opposite directions. Moreover, for every pair of distinct external vertices we add
two directed edges with opposite directions (Figure 3). So every vertex v € Vj, has
the same number of input and output edges (equal to 4). Our graph is 4-regular.

From now on, Ay and other notation stand for the changed model. Notice that
the order of A, has not changed but the size of Ay has (|Ex| = 2(3% + 3)). Of
course, the average shortest-path length and the diameter of Ay has changed too.
But they are still the powers of 2. So new {A;} is not a small world graphs family.

F1GURE 3. The graph of level 2

In this paper we use the conventional cryptographical notation. The ordinary
information (called plaintext) will be transformed into an encrypted, unintelligible
information (a ciphertext) by the cryptographical algorithm with a password (a
key).

The vertices and the edges represent the states and the transition between these
states in an automaton, respectively.

3.1. Encryption scheme. Let F be a vector space over a finite field F3 = {a, b, c}.
Every vector v = [ajas ... ag], o € F3 is considered to be a vertex label in Ag. We
identify every label v € FX with a plaintext or a ciphertext of length k. Notice that
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every label points to exactly one vertex but every vertex (besides external ones)
has two labels.

An encryption scheme on our graph model relies on special colouring of edges.
We need to attribute a colour to each edge e € Ej in such a way that no two
adjacent edges of the same direction (starting at the same vertex or ending in it)
share the same colour.

Lemma 1. Let {Ay}ren be a graphs family presented above. For every k =1,2,...
there exists a 4-colouring of edges such that for every vertex v € Vi, any pair of edges
starting (or ending) at v has not the same colour. And there is a representative of
each colour in the set of edges starting (or ending) at each vertex v.

For example Figure 4 presents edges colouring in A;. We identify a set of colours
with elements of Z, = {0,1,2,3}. A path in Ay between v,w € Vj is represented
by a finite sequence of colours [cg, 1, ..., ¢Cm], ¢ € Zy.

Let c be a colour of edge from a vertex v to a vertex w. By ¢~ ! we denote the
colour of edge from w to v.

FIGURE 4. The vertex labeling and edges colouring in Ag

Let p be a plaintext we encrypt to a ciphertext c¢. Let v, and v, be a ver-
tices representing the plaintext and the ciphertext, respectively. The key k =
[co,C1yvesCmym),ci € Za, t =0,1,...,m, ¢ip1 # ci_l, n € {0,1} in an encryption
procedure consisting of two parts. The first one [cg, ¢1, .. ., ¢y] is the path between
vp and v.. The second part 7 defines which one of two possible labels at v, concerns
a plaintext. The space IE"?f is totally ordered, so we put i = 0 for the first label and
1 = 1 for the second one. This information is necessary to a decryption procedure.

Notice that v, is a starting state in an automaton. Every password leads us to
some v, and all states (vertices) of such automaton are accepting ones.

The encryption scheme is to start in a vertex v, and pass on the graph along the
path defined by a password k (Figure 5). In each step of the algorithm the transition
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function f : Vi x Z4 — V), appoints a next vertex according to the following scheme

flvp,c0) =
(1) f('Ulacl> .: V2
fom,em) = ve.

At the end of this procedure we will reach the vertex v,.

<SR OIS SRER O

Fi1GURE 5. The encryption algorithm

As was mentioned above, the family {Ay }ren is not a small world graphs family.
It means that short paths between every pair of distinct vertices cannot exist. So
if we choose a sufficiency long password we will be sure that ciphertext cannot be
decrypted by other passwords of small length.

Each graph Ay is connected and the average shortest-path length is a power of
2. Hence our algorithm is a stream cipher. Each step depends only on the state of
the system after the previous step.

3.2. Decryption procedure. A decryption procedure bases on the inverse func-
tion f~1: Vi x Zy — Vj. The function f~! for v; € Vi, and ¢ € Z4 returns a vertex
vj € Vi such that f(v;,c) = v; (one of predecessors of v; indicated by an edge of
colour ¢). Knowing the ciphertext v, and the key k = [cg, 1, ..., Cm, 0], ¢ € Zy,n €
{0,1} one can obtain the vertex v, in the following decryption scheme

f_l(vcacm) = Um
(2) f_l(vnucm—l) = Um—1
[ Hvi,c0) = Vp.

Every internal vertex v, has two labels, so we have to choose the proper one
using the information 7 of the key k.
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