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1. Introduction

The classical transmission problem deals with the question how many possible
messages can we transmit over a noisy channel? Transmission means there is an
answer to the question ”What is the actual message?”

In the identification problem we deal with the question how many possible mes-
sages the receiver of a noisy channel can identify? Identification means there is an
answer to the question ”Is the actual message u?”. Here u can be any member of
the set of possible messages.

Allowing randomized encoding the optimal code size grows double exponentially
in the block length and somewhat surprisingly the second order capacity equals
Shannon’s first order transmission capacity (see [5]).

Thus, Shannon’s Channel Coding Theorem for Transmission is paralleled by
a Channel Coding Theorem for Identification. It seems natural to look for such
a parallel for sources, in particular for noiseless coding. This was suggested by
Ahlswede in [1].

Let (U , P ) be a source, where U = {1, 2, . . . , N}, P = {P1, P2, . . . , PN}, and let
C = {c1, c2, . . . , cN} be a binary prefix code (PC) for this source with ||cu|| as length
of cu. Introduce the random variable U with Prob(U = u) = pu for u = 1, 2, . . . , N
and the random variable C with C = cu = (c1, c2, . . . , cu||cu||) if U = u.

We use the PC for noiseless identification, that is user u wants to know whether
the source output equals u, that is, whether C equals cu or not. The user iteratively
checks whether C coincides with cu in the first, second, etc. letter and stops when
the first different letter occurs or when C = cu. The problem is: What is the
expected number LC(P, u) of checkings?

In order to calculate this quantity we introduce for the binary tree TC , whose
leaves are the codewords c1, c2, . . . , cN , the sets of leaves Cik(1 ≤ i ≤ N ; 1 ≤ k),
where Cik = {c ∈ C : c coincides with ci exactly until the k’th letter of ci}. If C
takes a value in Cuk, 0 ≤ k ≤ ||cu|| − 1, the answers are k times ”Yes” and 1 time
”No”. For C = cu we have

LC(P, u) =
||cu||−1∑

k=0

P (C ∈ Cuk)(k + 1) + ||cu||Pu.
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For a code C, the number LC(P ) = max1≥u≥N LC(P, u) is the expected number of
checkings in the worst case and L(P ) = minC LC(P ) is this number for the best
code.

2. Uniformly distributed sources

2.1. Construction of a prefix code. Let PN = { 1
N , . . . , 1

N }. We construct a
prefix code C in the following way. In each node (starting at the root) we split the
number of remaining codewords in proportion as close as possible to ( 1

2 , 1
2 ). It is

known [3] that for such code C
(1) lim

N→∞
LC(PN ) = 2

Example 1. Let N = 9, U = {1, 2, . . . , 9}, P1 = · · · = P9 = 1
9 . Then,

C = {000, 001, 010, 011, 100, 101, 110, 1110, 1111}

LC(P ) = LC(P, c8) =
4
9
.1 +

2
9
.2 +

1
9
.3 +

1
9
.4 +

1
9
.4 =

19
9
≈ 2, 111

LC(P, c9) = LC(P, c8); LC(P, c7) =
17
9

; LC(P, c5) = LC(P, c6) =
16
9

;

LC(P, c1) = LC(P, c2) = LC(P, c3) = LC(P, c4) =
15
9

In [2] was stated the problem to estimate an universal constant A = sup L(P )
for general distribution P = (P1, . . . , PN ). Here, we compute such constant for
uniform distribution and this code C.

Using decomposition formula for subtrees, we obtain the following recursion

(2) LCN
(PN ) =

dN
2 e
N

LCdN
2 e

(P d
N
2 e) + 1 , LC2(P 2) = 1

where Ct is the corresponding code with t codewords.
From (2) follows that the worst case for LC(PN ) is when N = 2k + 1, for any

integer k. We compute the exact value for LC(PN ) in this case.

Theorem 1. supN LC(PN ) = 2 + log2(N−1)−2
N

Proof. If N = 2k + 1 then 2k codewords are in level k (the root is level 0) in
the binary tree TC and one codeword is in level k + 1 (if this codeword is w then
LC(PN , w) = LC(PN )). For every node in level i (0 ≤ i ≤ k − 1) we split 2k−i−1

codewords in the left side and 2k−i−1 + 1 codewords in the right side. Therefore,
P (C ∈ Cwi) = 2k−i−1

2k+1
, i = 0, . . . , k − 1. Then, for LC(PN ) we obtain

LC(PN ) = LC(PN , w) =
k∑

i=0

P (C ∈ Cwi)(i + 1) + ||cw||Pw

=
k−1∑
i=0

P (C ∈ Cwi)(i + 1) + P (C ∈ Cwk)(k + 1) + ||cw||Pw

=
k−1∑
i=0

2k−i−1

2k + 1
(i + 1) +

1
2k + 1

(k + 1) +
k + 1
2k + 1

=
2k

2k + 1

k−1∑
i=0

i + 1
2i+1

+
2(k + 1)
2k + 1
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=
2k

2k + 1
.
2k+1 − k − 2

2k
+

2k + 2
2k + 1

=
2k+1 − k − 2

2k + 1
+

2k + 2
2k + 1

=
2k+1 + 2 + k − 2

2k + 1
= 2 +

k − 2
2k + 1

But N = 2k+1 and k = log2(N−1). Then we obtain LC(PN ) = 2+ log2(N−1)−2
N . �

2.2. Average identification length. Also, in our work we consider the case
where not only the source outputs but the users occur at random. In addition
to the source (U , P ) and random variable U, we are given (V, Q),V ≡ U with ran-
dom variable V independent of U and defined by Prob(V = v) = Qv for v ∈ V .
The source encoder knows the value u of U but not that of V , which chooses the
user v with probability Qv. Again let C = {c1, . . . , cN} be a binary prefix code and
let LC(P, u) be the expected number of checkings on code C for user u.

Instead of LC(P ) = maxu∈U LC(P, u) we can consider the average number of
expected checkings (also called average identification length):

LC(P,Q) =
∑
v∈V

QvLC(P, v); L(P,Q) = min
C

LC(P,Q)

A special case is Q = P , where

LC(P, P ) =
∑
u∈U

PuLC(P, u); L(P, P ) = min
C

LC(P, P )

and for uniform distribution we have LC(PN , PN ) = 1
N

∑
u∈U LC(PN , u).

2.3. Results. We calculate exact values of LC(PN ) and LC(PN , PN ) for some
N and summarize them in Table 1. We know [3] that for N = 2k, LC(PN ) =
LC(PN , PN ) = 2− 2

N .

TABLE 1 - some exact values for uniform distribution, 2k < N < 2k+1, k ≥ 3

N LC(PN ) LC(PN , PN )

2k + 1 2 + log2(N−1)−2
N 2 + log2(N−1)−2

N2

2k + 2k−1 − 1 2 2− 5(N+1)−3log2( 2N+2
3

)

3N2

2k + 2k−1 2− 1
N 2− 5

3N

2k + 2k−1 + 1 2 + log2( N−1
12

)

N 2− (5N−2)−3log2( N−1
12

)

3N2

2k+1 − 1 2− 1
N 2− 2N−log2(N+1)+1

N2
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3. Extension to liar models

3.1. Identification and lies. Suppose that when user u iteratively checks whether
C coincides with cu in the first, second, etc. letter, for some reasons he obtains
wrong information in any position. Then, there is a lie(error) in this position of the
codeword. In this model with lies (we follow the idea in [4] but here no different
costs of the lies), the user knows only that the general number of lies is at most e
and no information for the positions of lies.

Let LC(P, u) = LC(P ) for any u ∈ U . In this case, we denote by LC(P ; e) the
expected number of checkings if there are at most e lies. Now, main question is:
What is the expected number of checkings if there are at most e lies?

We can see that the user needs of e + 1 the same answers (”Yes” or ”No”) to be
sure for the correct answer in any position. If the user has done 2e + 1 questions
for any position he gets exact information for the value in this position. Therefore,
there exists trivial upper bound

(3) LC(P ; e) ≤ (2e + 1)LC(P )

Clearly, this bound (3) can be improved by decreasing the number of remaining
lies. The algorithm described below can be used.

3.2. An Algorithm. To decrease the number of remaining lies the following algo-
rithm can be used for any u ∈ U :

Step 0: BEGIN i := 1, Checkings := 0, actual message := v;

Step 1: If i > ||cv|| then Step 3. Otherwise, check codeword position i until
e + 1 the same answers. Let t be the number of obtained answers ”Yes” and f be
the number of obtained answers ”No”;

Step 2: Checkings := Checkings + (t + f). If t > f , then e := e− f , i := i + 1,
Step 1. Otherwise, the actual message v 6= u;

Step 3: END.

By this algorithm, we obtain the following result.

Lemma 2. Let v be the current checked codeword and let i be the first position in
which cu and cv differ (if cu = cv then i = ||cu||). Then, the number of checkings
in the worst case is e(i + 1) + i.

Proof. We can see that the worst case with respect by e is when all lies(errors)
occur in position i. In this case

Checkings = (e + 1)(i− 1) + (2e + 1).1 = e(i + 1) + i.
If there is even one lie in any position m (1 ≤ m ≤ i − 1), for every position j

(m + 1 ≤ j ≤ i) the user needs of e the same answers. Then
Checkings = (m− 1)(e + 1) + (e + 2) + (i−m− 1)e + (2e− 1) = e(i + 1) + m <

e(i + 1) + i.
Therefore, this number e(i + 1) + i is the maximal number of checkings if this

algorithm is used. �

Example 2. Let N = 9, U = {1, 2, . . . , 9}, P1 = · · · = P9 = 1
9 , and e = 3
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Then
C = {000, 001, 010, 011, 100, 101, 110, 1110, 1111},

and
LC(P, c8) = LC(P, c9) = LC(P )

LC(P ; 3) ≤ 4
9
.7 +

2
9
.(4 + 7) +

1
9
.(4 + 4 + 7)

+
1
9
.(4 + 4 + 4 + 7) +

1
9
.(4 + 4 + 4 + 7) =

103
9

3.3. Results for liar models. Using Lemma 2, we prove our main result.

Theorem 3. LC(P ; e) ≤ (e + 1)LC(P ) + e

Proof. Let k = ||cu|| and Pui = P (C ∈ Cui). Then, in the worst case we obtain the
following

LC(P ; e) ≤
k−1∑
i=0

Pui(e(i + 2) + i + 1) + (e(k + 1) + k)Pu

= e

k−1∑
i=0

Pui(i + 2) + e(k + 1)Pu +
k−1∑
i=0

Pui(i + 1) + kPu

= e

k−1∑
i=0

(Pui(i + 1) + Pui) + e(k + 1)Pu + LC(P )

= e(
k−1∑
i=0

Pui(i + 1) + kPu) + e(
k−1∑
i=0

Pui + Pu) + LC(P )

= eLC(P ) + e.1 + LC(P ) = (e + 1)LC(P ) + e.

�
Let MC(P ; e) = (e + 1)LC(P ) + e. Then we have;

Corollary 4. For uniform distribution PN

lim
N→∞

MC(PN ; e) = 3e + 2

Proof. Follows from (1) and Theorem 3. �
Let consider other distribution P when all individual probabilities are powers of

1
2 , Pu = 1

2`u
, u ∈ U = {1, 2, . . . , N}. Since∑

u∈U

1
2`u

= 1

by Kraft’s theorem there is a prefix code C with codeword lengths ||cu|| = `u.
For such code C we know [2] that LC(P, u) = 2(1−Pu). Therefore, limN→∞ LC(P ) =

2 and by Theorem 3 we obtain the same result for this distribution P .

Corollary 5. limN→∞MC(P ; e) = 3e + 2

Also, for general distribution P = (P1, P2, . . . , PN ) we know that L(P ) ≤ 3 ([3],
Theorem 3). Therefore, for L(P ; e) (the expected number of checkings for the best
code C and at most e lies) we have

Corollary 6. L(P ; e) ≤ 4e + 3
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[3] R. Ahlswede, B. Balkenhol, and C. Kleinewächter, ”Identification for sources”, General The-
ory of Information Transfer and Combinatorics, Lecture Notes in Computer Science, Vol.

4123, Springer Verlag, 51–61, 2006.
[4] R. Ahlswede, F. Cicalese, and C. Deppe, Searching with lies under error transition cost

constraints, General Theory of Information Transfer and Combinatorics, Special Issue of

Discrete Applied Mathematics, to appear.
[5] R.Ahlswede, G.Dueck, ”Identification via channels”, IEEE Trans. Inf. Theory, Vol.35, No.1,

15–29, 1989.


