CLIFFORD-WEIL GROUPS OF QUOTIENT REPRESENTATIONS.

Annika Günther
Lehrstuhl D für Mathematik, RWTH Aachen University
52056 Aachen, Germany
annika.guenther@math.rwth-aachen.de

Gabriele Nebe
Lehrstuhl D für Mathematik, RWTH Aachen University
52056 Aachen, Germany
nebe@math.rwth-aachen.de

Eric M. Rains
Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, U.S.A., rains@caltech.edu

Abstract

This note gives an explicit proof that the scalar subgroup of the Clifford-Weil group remains unchanged when passing to the quotient representation filling a gap in [3]. For other current and future errata to [3] see http://www.research.att.com/~njas/doc/cliff2.html/.

1. Introduction

All notations in this paper are introduced in detail in [3] and we refer to this book for their definitions. One main goal of the book is to introduce a unified language to describe the Type of self-dual codes combining the different notions of self-duality and Types, that are well established in coding theory. The Type of a code is a finite representation $\rho=\left(V, \rho_{M}, \rho_{\Phi}, \beta\right)$ of a finite form $\operatorname{ring} \mathcal{R}=(R, M, \psi, \Phi)$. The finite alphabet V is a left module for the ring R and the biadditive form $\beta: V \times V \rightarrow \mathbb{Q} / \mathbb{Z}$ defines the notion of duality. A code C of length N is then an R-submodule of V^{N} and the dual code is

$$
C^{\perp}=\left\{v \in V^{N} \mid \sum_{i=1}^{N} \beta\left(v_{i}, c_{i}\right)=0 \forall c \in C\right\} .
$$

Additional properties of codes of a given Type are encoded in the R-qmodule $\rho_{\Phi}(\Phi)$ which is a certain subgroup of the group of quadratic mappings $V \rightarrow \mathbb{Q} / \mathbb{Z}$. A code $C \leq V^{N}$ is isotropic, if $C \leq C^{\perp}$ and

$$
\sum_{i=1}^{N} \rho_{\Phi}(\phi)\left(c_{i}\right)=0 \text { for all } \phi \in \Phi \text { and for all } c \in C
$$

Given a finite representation ρ, one associates a finite subgroup $\mathcal{C}(\rho)$ of $\mathrm{GL}(\mathbb{C}[V])$, called the associated Clifford-Weil group (see Section 2). For certain finite form rings (including direct products of matrix rings over finite Galois rings) it is shown in [3, Theorem 5.5.7] that the ring of polynomial invariants of $\mathcal{C}(\rho)$ is spanned by the complete weight-enumerators of self-dual isotropic codes of Type ρ. We conjecture that this theorem holds for arbitrary finite form rings. It is shown in [3, Theorem $5.4 .13,5.5 .3]$ that in general the order of the scalar subgroup

$$
\mathcal{S}(\mathcal{C}(\rho))=\mathcal{C}(\rho) \cap \mathbb{C}^{*} \mathrm{id}_{\mathbb{C}[V]}
$$

is exactly the greatest common divisor of the lengths of self-dual isotropic codes of Type ρ. The proof of this theorem uses the fact that the scalar subgroup of $\mathcal{C}(\rho)$ remains unchanged when passing to the quotient representation. The aim of the present note is to give a full proof of this statement, Theorem 1.

Throughout the note we fix an isotropic code $C \leq C^{\perp} \leq V$ in ρ. Then the quotient representation ρ / C is defined by

$$
\rho / C:=\left(C^{\perp} / C, \rho_{M} / C, \rho_{\Phi} / C, \beta / C\right)
$$

where $\left(\rho_{M} / C(m)\right)(v+C, w+C)=\rho_{M}(m)(v, w),\left(\rho_{\Phi} / C(\phi)\right)(v+C)=\rho_{\Phi}(\phi)(v)$, and $\beta / C(v+C, w+C)=\beta(v, w)$ for all $v, w \in C^{\perp}, m \in M, \phi \in \Phi$.
Theorem 1. Let $\mathcal{R}=(R, M, \psi, \Phi)$ be a finite form-ring and let $\rho=\left(V, \rho_{M}, \rho_{\Phi}, \beta\right)$ be a finite representation of \mathcal{R}. Let C be an isotropic self-orthogonal code in ρ. Then

$$
\mathcal{S}(\mathcal{C}(\rho)) \cong \mathcal{S}(\mathcal{C}(\rho / C))
$$

2. Clifford-Weil groups and hyperbolic counitary groups

The Clifford-Weil group $\mathcal{C}(\rho)$ associated to the finite representation ρ acts linearly on the space $\mathbb{C}[V]$ with basis $\left[b_{v}: v \in V\right]$. It is generated by

$$
\begin{array}{ll}
m_{r}: b_{v} \mapsto b_{r v} & \text { for } r \in R^{*} \\
d_{\phi}: b_{v} \mapsto \exp \left(2 \pi i \rho_{\Phi}(\phi)(v)\right) b_{v} & \text { for } \phi \in \Phi \\
h_{e, u_{e}, v_{e}}: b_{v} \mapsto \frac{1}{|e V|^{1 / 2}} \sum_{w \in e V} \exp \left(2 \pi i \beta\left(w, v_{e} v\right)\right) b_{w+(1-e) v} & e^{2}=e \in R \text { symmetric. }
\end{array}
$$

Recall that the form-ring structure defines an involution ${ }^{J}$ on R. Then an idempotent $e \in R$ is called symmetric, if $e R$ and $e^{J} R$ are isomorphic as right R-modules, which means that there are $u_{e} \in e R e^{J}, v_{e} \in e^{J} R e$ such that $e=u_{e} v_{e}$ and $e^{J}=v_{e} u_{e}$.

The Clifford-Weil group $\mathcal{C}(\rho)$ is a projective representation of the hyperbolic counitary group

$$
\mathcal{U}(R, \Phi)=U\left(\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \operatorname{Mat}_{2}(R), \Phi_{2}\right)
$$

The elements of $\mathcal{U}(R, \Phi)$ are of the form

$$
X=\left(\left(\begin{array}{cc}
\alpha & \beta \tag{1}\\
\gamma & \delta
\end{array}\right),\left(\begin{array}{cc}
\phi_{1} & m \\
& \phi_{2}
\end{array}\right)\right) \in \operatorname{Mat}_{2}(R) \times \Phi_{2}
$$

such that

$$
\left(\begin{array}{cc}
\gamma^{J} \alpha & \gamma^{J} \beta \\
\delta^{J} \alpha-1 & \delta^{J} \beta
\end{array}\right)=\psi_{2}^{-1}\left(\begin{array}{cc}
\lambda\left(\phi_{1}\right) & m \\
\tau(m) & \lambda\left(\phi_{2}\right)
\end{array}\right)
$$

A more detailed definition of $\mathcal{U}(R, \Phi)$ can be found in [3, Chapter 5.2].
It is shown in the book that $\mathcal{U}(R, \Phi)$ is generated by the elements

$$
d((r, \phi))=\left(\left(\begin{array}{cc}
r^{-J} & r^{-J} \psi^{-1}(\lambda(\phi)) \\
0 & r
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
& \phi
\end{array}\right)\right)
$$

with $r \in R^{*}, \phi \in \Phi$ and

$$
H_{e, u_{e}, v_{e}}=\left(\left(\begin{array}{cc}
1-e^{J} & v_{e} \\
-\epsilon^{-1} u_{e}^{J} & 1-e
\end{array}\right),\left(\begin{array}{cc}
0 & \psi(-\epsilon e) \\
0
\end{array}\right)\right)
$$

where $e=u_{e} v_{e}$ runs through the symmetric idempotents of R.
To formalize the proofs we let $\mathcal{F}(R, \Phi)$ denote the free group on

$$
\left\{\tilde{d}(r, \phi), \tilde{H}_{e, u_{e}, v_{e}} \mid r \in R^{*}, \phi \in \Phi, e=u_{e} v_{e} \text { symmetric idempotent in } R\right\}
$$

On these generators there are two group epimorphism:

$$
\pi: \mathcal{F}(R, \Phi) \rightarrow \mathcal{U}(R, \Phi), \tilde{d}(r, \phi) \mapsto d((r, \phi)), \tilde{H}_{e, u_{e}, v_{e}} \mapsto H_{e, u_{e}, v_{e}}
$$

and

$$
\begin{equation*}
p: \mathcal{F}(R, \Phi) \rightarrow \mathcal{C}(\rho) ; \quad \tilde{d}(r, \phi) \mapsto m_{r} d_{\phi}, \quad \tilde{H}_{e, u_{e}, v_{e}} \mapsto h_{e, u_{e}, v_{e}} \tag{2}
\end{equation*}
$$

Theorem 2. $p(\operatorname{ker}(\pi)) \subseteq \mathcal{S}(\mathcal{C}(\rho))$.
If ρ is faithful (i.e. $\operatorname{Ann}_{R}(V)=0=\operatorname{ker}\left(\rho_{\Phi}\right)$), then $p(\operatorname{ker}(\pi))=\mathcal{S}(\mathcal{C}(\rho))$.
This is essentially [3, Theorem 5.3.2]. However the calculations there were omitted so we take the opportunity to give them here for completeness (also since there are a few typos in the proof there). As in [3, Theorem 5.3.2] we define the associated Heisenberg group $\mathcal{E}(V):=V \times V \times \mathbb{Q} / \mathbb{Z}$ with multiplication

$$
(z, x, q) \cdot\left(z^{\prime}, x^{\prime}, q^{\prime}\right)=\left(z+z^{\prime}, x+x^{\prime}, q+q^{\prime}+\beta\left(x^{\prime}, z\right)\right)
$$

Then $\mathcal{E}(V)$ acts linearly on $\mathbb{C}[V]$ by

$$
(z, x, q) \cdot b_{v}=\exp (2 \pi i(q+\beta(v, z))) b_{v+x}, \quad(z, x, q) \in \mathcal{E}(V), v \in V
$$

This yields an absolutely irreducible faithful representation $\Delta: \mathcal{E}(V) \rightarrow G L_{|V|}(\mathbb{C})$.
Lemma 3. The hyperbolic counitary group $\mathcal{U}(R, \Phi)$ acts as group automorphisms on $\mathcal{E}(V)$ via

$$
\begin{aligned}
& \left(\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right),\left(\begin{array}{ll}
\phi_{1} & m \\
& \phi_{2}
\end{array}\right)\right)(z, x, q) \\
& =\left(\alpha z+\beta x, \gamma z+\delta x, q+\rho_{\Phi}\left(\phi_{1}\right)(z)+\rho_{\Phi}\left(\phi_{2}\right)(x)+\rho_{M}(m)(z, x)\right)
\end{aligned}
$$

If ρ is a faithful representation, then this action is faithful.
Also the associated Clifford-Weil group $\mathcal{C}(\rho) \leq \mathrm{GL}(\mathbb{C}[V])$ acts on $\Delta(\mathcal{E}(V)) \cong$ $\mathcal{E}(V)$ by conjugation.

Lemma 4. For $r \in R^{*}, \phi \in \Phi$ and $(z, x, q) \in \mathcal{E}(V)$ we have

$$
\Delta(d((r, \phi))(z, x, q))=\left(m_{r} d_{\phi}\right) \Delta((z, x, q))\left(m_{r} d_{\phi}\right)^{-1}
$$

Proof. The proof is an easy calculation.

$$
d((r, \phi))(z, x, q)=\left(r^{-J} z+r^{-J} \psi^{-1}(\lambda(\phi)) x, r x, q+\rho_{\Phi}(\phi)(x)\right)
$$

maps the basis element $b_{v}(v \in V)$ to

$$
\exp \left(2 \pi i\left(q+\rho_{\Phi}(\phi)(x)+\beta\left(v, r^{-J} z+r^{-J} \psi^{-1}(\lambda(\phi)) x\right)\right)\right) b_{v+r x}
$$

On the other hand

$$
\begin{aligned}
& \left(m_{r} d_{\phi}\right) \Delta((z, x, q))\left(m_{r} d_{\phi}\right)^{-1}\left(b_{v}\right)= \\
& =m_{r} d_{\phi} \exp \left(2 \pi i\left(q-\rho_{\Phi}(\phi)\left(r^{-1} v\right)+\beta\left(r^{-1} v, z\right)\right)\left(b_{r^{-1} v+x}\right)\right. \\
& =\exp \left(2 \pi i\left(q-\rho_{\Phi}(\phi)\left(r^{-1} v\right)+\beta\left(r^{-1} v, z\right)+\rho_{\Phi}(\phi)\left(r^{-1} v+x\right)\right)\right)\left(b_{v+r x}\right) \\
& =\exp \left(2 \pi i\left(q+\beta\left(r^{-1} v, z\right)+\rho_{M}(\lambda(\phi))\left(r^{-1} v, x\right)\right)\right)\left(b_{v+r x}\right)
\end{aligned}
$$

which is the same as the above, since $\beta\left(r^{-1} v, z\right)=\beta\left(v, r^{-J} z\right)$ by definition of the involution J and

$$
\rho_{M}(\lambda(\phi))\left(r^{-1} v, x\right)=\beta\left(r^{-1} v, \psi^{-1}(\lambda(\phi)) x\right)=\beta\left(v, r^{-J} \psi^{-1}(\lambda(\phi)) x\right)
$$

Lemma 5. For $e=u_{e} v_{e}$ a symmetric idempotent in R and $(z, x, q) \in \mathcal{E}(V)$

$$
\Delta\left(H_{e, u_{e}, v_{e}}(z, x, q)\right)=h_{e, u_{e}, v_{e}} \Delta((z, x, q)) h_{e, u_{e}, v_{e}}^{-1}
$$

Proof. The group $\mathcal{E}(V)$ is generated by $(z, 0,0),(0, x, 0),(0,0, q)$ where $z \in e^{J} V \cup$ $\left(1-e^{J}\right) V, x \in e V \cup(1-e) V, q \in \mathbb{Q} / \mathbb{Z}$ and it is enough to check the lemma for these 5 types of generators. For $(0,0, q)$ this is clear. Similarly, if $z \in\left(1-e^{J}\right) V$ and $x \in(1-e) V$, then both sides yield $\Delta((z, x, q))$ as one easily checks. For $z \in e^{J} V$, $x \in e V, q \in \mathbb{Q} / \mathbb{Z}$

$$
H_{e, u_{e}, v_{e}}(z, x, q)=\left(v_{e} x,-\epsilon^{-1} u_{e}^{J} z, q+\beta(z,-\epsilon x)\right)
$$

To calculate the right hand side, we note that according to the decomposition

$$
V=e V \oplus(1-e) V
$$

the space $\mathbb{C}[V]=\mathbb{C}[e V] \otimes \mathbb{C}[(1-e) V]$ is a tensor product and

$$
h_{e, u_{e}, v_{e}}=\left(h_{e, u_{e}, v_{e}}\right)_{\mathbb{C}[e V]} \otimes \operatorname{id}_{\mathbb{C}[(1-e) V]}
$$

Moreover, the permutation matrix $\Delta((0, x, 0)): b_{v} \mapsto b_{v+x}$ for $x \in e V$ is a tensor product $p_{x} \otimes \mathrm{id}$ and similarly the diagonal matrix $\Delta((z, 0,0))$ for $z \in e^{J} V$ is a tensor product $d_{z} \otimes \mathrm{id}$. It is therefore enough to calculate the action on elements of $\mathbb{C}[e V]$. For $z=e^{J} z \in e^{J} V, x=e x \in e V$ and $v=e v \in e V$, we get

$$
\begin{aligned}
& h_{e, u_{e}, v_{e}} \circ \Delta\left(\left(e^{J} z, 0,0\right)\right) \circ h_{e, u_{e}, v_{e}}^{-1} b_{v}= \\
& =h_{e, u_{e}, v_{e}}\left(|e V|^{-1 / 2} \sum_{w \in e V} \exp \left(2 \pi i\left(\beta\left(-\epsilon^{-1} v_{e}^{J} \epsilon v, w\right)+\beta\left(w, e^{J} z\right)\right)\right) b_{w}\right) \\
& =|e V|^{-1} \sum_{w^{\prime} \in e V} \sum_{w \in e V} \exp \left(2 \pi i\left(\beta\left(-\epsilon^{-1} v_{e}^{J} \epsilon v, w\right)+\beta\left(w, e^{J} z\right)+\beta\left(w^{\prime}, v_{e} w\right)\right)\right) b_{w^{\prime}}
\end{aligned}
$$

Now $\beta\left(-\epsilon^{-1} v_{e}^{J} \epsilon v, w\right)+\beta\left(w, e^{J} z\right)+\beta\left(w^{\prime}, v_{e} w\right)=\beta\left(-\epsilon^{-1} v_{e}^{J} \epsilon v+\epsilon^{-1} z+\epsilon^{-1} v_{e}^{J} \epsilon w^{\prime}, w\right)$. Hence the sum over all w is non-zero, only if $-v_{e}^{J} \epsilon v+z+v_{e}^{J} \epsilon w^{\prime}=0$ which implies
that $w^{\prime}=v-\epsilon^{-1} u_{e}^{J} z$. Hence $h_{e, u_{e}, v_{e}} \circ \Delta\left(\left(e^{J} z, 0,0\right)\right) \circ h_{e, u_{e}, v_{e}}^{-1} b_{v}=b_{v-\epsilon^{-1} u_{e}^{J} z}$. A similar calculation yields

$$
\begin{aligned}
& h_{e, u_{e}, v_{e}} \circ \Delta((0, e x, 0)) \circ h_{e, u_{e}, v_{e}}^{-1} b_{v}= \\
& =h_{e, u_{e}, v_{e}}\left(|e V|^{-1 / 2} \sum_{w \in e V} \exp \left(2 \pi i\left(\beta\left(-\epsilon^{-1} v_{e}^{J} \epsilon v, w\right)\right)\right) b_{w+e x}\right) \\
& =h_{e, u_{e}, v_{e}}\left(|e V|^{-1 / 2} \sum_{w \in e V} \exp \left(2 \pi i\left(\beta\left(-\epsilon^{-1} v_{e}^{J} \epsilon v, w-e x\right)\right)\right) b_{w}\right) \\
& =h_{e, u_{e}, v_{e}} \circ h_{e, u_{e}, v_{e}}^{-1}\left(\exp \left(2 \pi i\left(\beta\left(\epsilon^{-1} v_{e}^{J} \epsilon v, e x\right)\right)\right) b_{v}\right) \\
& =\exp \left(2 \pi i\left(\beta\left(v, v_{e} x\right)\right)\right) b_{v}
\end{aligned}
$$

Proof. (of Theorem 2) That $p(\operatorname{ker}(\pi)) \subseteq \mathcal{S}(\mathcal{C}(\rho))$ follows from Lemma 4 and 5. Assume now that ρ is faithful. Then by Lemma 3 the action of $\mathcal{U}(R, \Phi)$ on $\mathcal{E}(V)$ is faithful: Let $s \in \mathcal{S}(\mathcal{C}(\rho))$. Then there is some $f \in \mathcal{F}(R, \Phi)$ with $p(f)=s$ since p is surjective. Moreover the action of $\pi(f) \in \mathcal{U}(R, \Phi)$ and $p(f) \in \mathcal{C}(\rho)$ on $\mathcal{E}(V)$ coincide, so $\pi(f)$ acts trivially on $\mathcal{E}(V)$ and therefore $f \in \operatorname{ker}(\pi)$.

Remark 6. Let ρ be faithful. Lemma 4 and 5 show that every element $a \in \mathcal{C}(\rho)$ induces an automorphism α on $\mathcal{E}(V)$ that is in $\mathcal{U}(R, \Phi)$. The latter group acts faithfully on $\mathcal{E}(V)$ by Lemma 3 hence $\alpha \in \mathcal{U}(R, \Phi)$ is uniquely determined. This defines a group epimorphism

$$
\nu: \mathcal{C}(\rho) \rightarrow \mathcal{U}(R, \Phi), \quad a \mapsto \alpha
$$

The kernel of ν is precisely the scalar subgroup $\mathcal{S}(\mathcal{C}(\rho))$. The inverse homomorphism is

$$
\theta: \mathcal{U}(R, \Phi) \rightarrow \mathcal{C}(\rho) / \mathcal{S}(\mathcal{C}(\rho)), u \mapsto p\left(\pi^{-1}(u)\right)
$$

which is well defined by Theorem 2.
For the calculations in Section 5 we need the following lemma.
Lemma 7. Let $X \in \mathcal{U}(R, \Phi)$ be as in (1). If $\delta^{2}=\delta$ then $\iota:=1-\delta$ is a symmetric idempotent of R.

Proof. We define $u_{\iota}=-\iota \gamma^{J} \iota^{J}, v_{\iota}=\iota^{J} \beta \iota$ and calculate

$$
\begin{aligned}
u_{\iota} v_{\iota} & =-(1-\delta) \epsilon^{-1} \gamma^{J}\left(1-\delta^{J}\right) \beta(1-\delta) \\
& =-(1-\delta) \epsilon^{-1} \underbrace{\gamma^{J} \beta}_{=\alpha^{J} \epsilon \delta-\epsilon}(1-\delta)+(1-\delta) \epsilon^{-1} \gamma^{J} \underbrace{\delta^{J} \beta}_{=\beta^{J} \epsilon \delta}(1-\delta) \\
& =(1-\delta) \epsilon^{-1} \epsilon(1-\delta)=1-\delta=\iota
\end{aligned}
$$

and

$$
\begin{aligned}
v_{\iota} u_{\iota} & =-\left(1-\delta^{J}\right) \beta(1-\delta) \epsilon^{-1} \gamma^{J}\left(1-\delta^{J}\right) \\
& =-\left(1-\delta^{J}\right) \underbrace{\beta \epsilon^{-1} \gamma^{J}}_{=\alpha \delta^{J}-1}\left(1-\delta^{J}\right)+\left(1-\delta^{J}\right) \beta \underbrace{\delta \epsilon^{-1} \gamma^{J}}_{=\gamma \delta^{J}}\left(1-\delta^{J}\right) \\
& =-\left(1-\delta^{J}\right)(-1)\left(1-\delta^{J}\right)=1-\delta^{J}=\iota^{J} .
\end{aligned}
$$

$$
\text { 3. } \mathcal{S}(\mathcal{C}(\rho)) \leq \mathcal{S}(\mathcal{C}(\rho / C))
$$

The Clifford-Weil group $\mathcal{C}(\rho / C)$ can be derived from $\mathcal{C}(\rho)$ by restricting the operation of $\mathcal{C}(\rho)$ to a submodule of $\mathbb{C}[V]$.

Lemma 8. The group $\mathcal{C}(\rho)$ acts on a submodule of $\mathbb{C}[V]$ isomorphic to $\mathbb{C}\left[C^{\perp} / C\right]$. This yields a representation

$$
\text { res : } \mathcal{C}(\rho) \rightarrow \mathrm{GL}\left(\mathbb{C}\left[C^{\perp} / C\right]\right)
$$

with $\operatorname{res}(\mathcal{C}(\rho)) \leq \mathcal{C}(\rho / C)$. For the scalar subgroups we get $\operatorname{ker}(\operatorname{res}) \cap \mathcal{S}(\mathcal{C}(\rho))=\{1\}$ and hence $\mathcal{S}(\mathcal{C}(\rho))$ is isomorphic to a subgroup of $\mathcal{S}(\mathcal{C}(\rho / C))$.

Proof. Let Rep denote a set of coset representatives of C^{\perp} / C. We define a subspace

$$
U:=\left\{\sum_{v \in \operatorname{Rep}} \sum_{c \in C} a_{v} b_{v+c} \mid a_{v} \in \mathbb{C}\right\} \leq \mathbb{C}[V] .
$$

This subspace is isomorphic to $\mathbb{C}\left[C^{\perp} / C\right]$ via

$$
f: \mathbb{C}\left[C^{\perp} / C\right] \rightarrow U, \sum_{v \in \operatorname{Rep}} a_{v} b_{v+C} \mapsto \sum_{v \in \operatorname{Rep}} \sum_{c \in C} a_{v} b_{v+c} .
$$

So we have

$$
\operatorname{res}(x)=f \circ x \circ f^{-1} \in G L(U)
$$

for $x \in \mathcal{C}(\rho)$. Particularly, if $x=s \cdot \operatorname{id}_{\mathbb{C}[V]}$ then $\operatorname{res}(x)=s \cdot \mathrm{id}_{\mathbb{C}\left[C^{\perp} / C\right]}$ and hence the restriction of res to the scalar subgroup of $\mathcal{C}(\rho)$ is injective.

We now will show that

$$
\star_{H} \quad f \circ p\left(\tilde{H}_{e, u_{e}, v_{e}}\right) \circ f^{-1}=p / C\left(\tilde{H}_{e, u_{e}, v_{e}}\right)
$$

and

$$
\star_{d} \quad f \circ p(\tilde{d}((r, \phi))) \circ f^{-1}=p / C(\tilde{d}((r, \phi)))
$$

where $p: \mathcal{F}(R, \Phi) \rightarrow \mathcal{C}(\rho)$ and $p / C: \mathcal{F}(R, \Phi) \rightarrow \mathcal{C}(\rho / C)$ denote the group homomorphisms as defined (2). So we have $\operatorname{Im}(\mathrm{res}) \leq \mathcal{C}(\rho / C)=\operatorname{Im}(p / C)$ which shows the lemma.

To prove \star_{H} let $v+C \in C^{\perp} / C$ and let T denote a set of coset representatives of $e C^{\perp} / e C \cong e C^{\perp} / C$. Then

$$
\begin{aligned}
& f^{-1} \circ p\left(\tilde{H}_{e, u_{e}, v_{e}}\right) \circ f\left(b_{v+C}\right)=f^{-1} \circ p\left(\tilde{H}_{e, u_{e}, v_{e}}\right)\left(\sum_{c \in C} b_{v+c}\right) \\
= & f^{-1}\left(\sum_{c \in C}|e V|^{-\frac{1}{2}} \sum_{w \in e V} \exp \left(2 \pi i \beta\left(w, v_{e}(v+c)\right)\right) b_{w+(1-e)(v+c)}\right) \\
= & f^{-1}\left(|e V|^{-\frac{1}{2}} \sum_{w \in e V} \exp \left(2 \pi i \beta\left(w, v_{e} v\right)\right) \sum_{c^{\prime} \in(1-e) C} \cdot\right. \\
& \cdot \underbrace{}_{c \in e C} \exp \left(2 \pi i \beta\left(w, v_{e} c\right)\right) b_{w+(1-e)\left(v+c^{\prime}\right)}) \\
= & f^{-1}\left(\frac{|e C|}{\left.|e V|^{\frac{1}{2}} \sum_{w \in e C^{\perp}} \sum_{c^{\prime} \in(1-e) C} \exp \left(2 \pi i \beta\left(w, v_{e} v\right)\right) b_{w+(1-e)\left(v+c^{\prime}\right)}\right)} \begin{array}{rl}
0 & e C^{\perp}, \\
= & f^{-1}\left(\frac{|e C|}{|e V|^{\frac{1}{2}}} \sum_{w \in T h e r w i s e .} \sum_{c^{\prime} \in(1-e) C} \sum_{c \in e C} \exp \left(2 \pi i \beta\left(w, v_{e} v\right)\right) b_{w+c+(1-e)\left(v+c^{\prime}\right)}\right) \\
= & f^{-1}\left(\frac{|e C|}{|e V|^{\frac{1}{2}}} \sum_{w \in T} \exp \left(2 \pi i \beta\left(w, v_{e} v\right)\right) \sum_{c \in C} b_{w+(1-e) v}+c\right) \\
= & \left|e C^{\perp} / C\right|^{-\frac{1}{2}} \sum_{w \in e C^{\perp} / C} \exp \left(2 \pi i \beta / C\left(w, v_{e}(v+C)\right)\right) b_{w+(1-e)(v+C)} \\
= & p / C\left(\tilde{H}_{e, u_{e}, v_{e}}\right)\left(b_{v+C}\right) .
\end{array}\right.
\end{aligned}
$$

To show \star_{d} we note that $\rho_{\Phi}(\phi)(c)=0$ for all $c \in C$ and for all $\phi \in \Phi$ and obtain

$$
\begin{aligned}
& f^{-1} \circ p(\tilde{d}((r, \phi))) \circ f\left(b_{v+C}\right)=f^{-1} \circ p(\tilde{d}((r, \phi)))\left(\sum_{c \in C} b_{v+c}\right) \\
& =f^{-1}\left(p(\tilde{d}((r, 0))) \sum_{c \in C} \exp \left(2 \pi i \rho_{\Phi}(\phi)(v+c)\right) b_{v+c}\right) \\
& =f^{-1}\left(\sum_{c \in C} \exp \left(2 \pi i \rho_{\Phi}(\phi)(v)\right) b_{r v+r c}\right) \\
& =f^{-1}\left(\sum_{c \in C} \exp \left(2 \pi i \rho_{\Phi}(\phi)(v)\right) b_{r v+c}\right) \\
& \left.=\exp \left(2 \pi i \rho_{\Phi} / C(\phi)(v+C)\right) b_{r(v+C)}\right) \\
& =p / C(\tilde{d}((r, \phi)))\left(b_{v+C}\right)
\end{aligned}
$$

4. The strategy.

Without loss of generality we now assume that ρ is faithful, that is,

$$
\operatorname{ker}(\rho)=\left(\operatorname{Ann}_{R}(V), \operatorname{ker}\left(\rho_{\Phi}\right)\right)=(0,0)
$$

and let $(I, \Gamma)=\operatorname{ker}(\rho / C)$. We then define $\overline{\text { res }}: \mathcal{U}(R, \Phi) \rightarrow \mathcal{U}(R / I, \Phi / \Gamma)$ by

$$
\left.\left.\overline{\operatorname{res}}\left(\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right),\left(\begin{array}{cc}
\phi_{1} & m \\
& \phi_{2}
\end{array}\right)\right)\right)=\left(\left(\begin{array}{cc}
\alpha+I & \beta+I \\
\gamma+I & \delta+I
\end{array}\right),\left(\begin{array}{cc}
\phi_{1}+\Gamma & m+\psi(I) \\
\phi_{2}+\Gamma
\end{array}\right)\right)\right)
$$

By Remark 6 the epimorphism

$$
\nu: \mathcal{C}(\rho) \rightarrow \mathcal{U}(R, \Phi) \text { by } \nu\left(m_{r} d_{\phi}\right)=d((r, \phi)), \quad \nu\left(h_{e, u_{e}, v_{e}}\right)=H_{e, u_{e}, v_{e}}
$$

for $r \in R^{*}, \phi \in \Phi$ and symmetric idempotents $e=u_{e} v_{e} \in R$ is well defined and its kernel is $\mathcal{S}(\mathcal{C}(\rho))$. Similarly $\bar{\nu}: \mathcal{C}(\rho / C) \rightarrow \mathcal{U}(R / I, \Phi / \Gamma)$. Then $\nu \circ p=\pi$ and $\bar{\nu} \circ p / C=\pi / C$, where $\pi / C: \mathcal{F}(R / I, \Phi / \Gamma) \rightarrow \mathcal{U}(R / I, \Phi / \Gamma)$ is the analogous group epimorphism. Again the representation ρ / C of $(R / I, \Phi / \Gamma)$ is faithful so by Remark 6 the kernel of $\bar{\nu}$ is $\mathcal{S}(\mathcal{C}(\rho / C))$.

We then have the following commutative diagram with exact rows and columns

To see that all sequences are exact, we note that $\nu_{\mid \operatorname{ker}(\mathrm{res})}$ is injective, since $\operatorname{ker}(\operatorname{res}) \cap \mathcal{S}(\mathcal{C}(\rho))=1$. The homomorphisms $\overline{\text { res }}$ and res are surjective, since idempotents and units of R / I lift to idempotents and units of R. Moreover $\overline{\text { res }} \circ \nu=\bar{\nu} \circ$ res as one checks on the generators.

The claim of Theorem 1 is that \mathcal{Y} is trivial. But this is fulfilled if and only if \mathcal{Y}^{\prime} is trivial, that is, if $\left.\nu\right|_{\mathrm{ker}(\mathrm{res})}$ is an isomorphism since

$$
|\mathcal{Y}|=\frac{|\mathcal{S}(\mathcal{C}(\rho / C))|}{|\mathcal{S}(\mathcal{C}(\rho))|}=\frac{|\mathcal{C}(\rho / C)| \cdot|\mathcal{U}(R, \Phi)|}{|\mathcal{U}(R / I, \Phi / \Gamma)| \cdot|\mathcal{C}(\rho)|}=\frac{|\operatorname{ker}(\overline{\mathrm{res}})|}{|\operatorname{ker}(\mathrm{res})|}=\left|\mathcal{Y}^{\prime}\right| .
$$

5. The surjectivity of $\left.\nu\right|_{\text {ker(res) }}$

During the proof of Theorem 1 some results on lifting symmetric idempotents are needed, which are stated in the next two lemmata.

Lemma 9. Let R be an Artinian ring and I an ideal of R. If $e \in I+\operatorname{rad} R \subseteq R$ such that $e^{2} \equiv e \bmod \operatorname{rad} R$ then there exists an idempotent $e^{\prime} \in I$ such that $e^{\prime} \equiv e$ $\bmod \operatorname{rad} R$.

Proof. We choose $x_{0} \in \operatorname{rad} R$ such that $e_{0}:=e+x_{0} \in I$. Then $e_{0}+\operatorname{rad} R$ is an idempotent in $R / \operatorname{rad} R$. Since $\operatorname{rad} R$ is a nilpotent ideal of $R[2$, Theorem 4.9] constructs an idempotent $e^{\prime}=f\left(e_{0}\right) \in I$ for some polynomial $f \in \mathbb{Z}[X]$ with $f(0)=0$ such that $e^{\prime}+\operatorname{rad} R=e_{0}+\operatorname{rad} R$.

By [2, Theorem 4.5] applied to an idempotent $e \in R$, the right-modules $e R$ and $e^{J} R$ are isomorphic, if and only if their quotients modulo $\operatorname{rad} R$ are isomorphic. Hence we find

Lemma 10. Let $e+\operatorname{rad} R \in R / \operatorname{rad} R$ be a symmetric idempotent such that

$$
e+\operatorname{rad} R=u_{e} v_{e}+\operatorname{rad} R, \quad e^{J}+\operatorname{rad} R=v_{e} u_{e}+\operatorname{rad} R,
$$

$u_{e}+\operatorname{rad} R \in\left(e R e^{J}\right)+\operatorname{rad} R, v_{e} \in\left(e^{J} R e\right)+\operatorname{rad} R$. If $e \in R$ is an idempotent then e is symmetric as well. More precisely, there exist $\tilde{u}_{e} \in e R e^{J}, \tilde{v}_{e} \in e^{J} R e$ such that

$$
e=\tilde{u}_{e} \tilde{v}_{e}, e^{J}=\tilde{v}_{e} \tilde{u}_{e}
$$

and $\tilde{v}_{e} \equiv v_{e} \bmod \operatorname{rad} R$.
For the rest of this note, let

$$
X:=\left(\left(\begin{array}{cc}
\alpha & \beta \tag{3}\\
\gamma & \delta
\end{array}\right),\left(\begin{array}{cc}
\phi_{1} & m \\
& \phi_{2}
\end{array}\right)\right) \in \operatorname{ker}(\overline{\mathrm{res}})
$$

and let $(I, \Gamma):=\operatorname{ker}(\rho / C)$. In particular, $\alpha, \delta \in 1+I, \beta, \gamma \in I, \phi_{1}, \phi_{2} \in \Gamma$ and $m \in \psi(I)$. We have to find some $x \in \operatorname{ker}(\mathrm{res})$ such that $\nu(x)=X$.
Lemma 11. We have $d(P(R, \Phi)) \cap \operatorname{ker}(\overline{\mathrm{res}}) \subseteq \operatorname{Im}\left(\left.\nu\right|_{\operatorname{ker}(\mathrm{res})}\right)$.
Proof. Let $r \in R^{*}, \phi \in \Phi$ such that $d((r, \phi))=\nu\left(m_{r} d_{\phi}\right) \in \operatorname{ker}(\overline{\mathrm{res}})$. Then $r \in 1+I$ and $\phi \in \Gamma$. In particular r acts as the identity on C^{\perp} / C and $\rho_{\Phi} / C(\phi)=0$. This implies that both m_{r} and $d_{\phi} \in \operatorname{ker}(\mathrm{res})$.

Lemma 12. Let δ be a unit. Then there exists $x \in \operatorname{ker}(\mathrm{res})$ such that $\nu(x)=X$.
Proof. Since ker(res) is a normal subgroup of $\mathcal{C}(\rho)$ it suffices to show that X is contained in the normal subgroup of $\mathcal{U}(R, \Phi)$ generated by the elements $d(P(R, \Phi)) \cap \operatorname{ker}(\overline{\mathrm{res}})$. We show that there is $\phi \in \Gamma$ such that

$$
X=d\left(\left(\delta, \phi_{2}\right)\right) H_{1,1,1} d((1, \phi)) H_{1,1,1}^{-1}
$$

We have $d\left(\left(\delta, \phi_{2}\right)\right)=\left(\left(\begin{array}{cc}\delta^{-J} & \beta \\ 0 & \delta\end{array}\right),\left(\begin{array}{cc}0 & 0 \\ & \phi_{2}\end{array}\right)\right)$ and hence

$$
d\left(\left(\delta, \phi_{2}\right)\right)^{-1}=\left(\left(\begin{array}{cc}
\delta^{J} & -\delta^{J} \beta \delta^{-1} \\
0 & \delta^{-1}
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
& -\phi_{2}\left[\delta^{-1}\right]
\end{array}\right)\right)
$$

We therefore find

$$
d\left(\left(\delta, \phi_{2}\right)\right)^{-1} X=\left(\left(\begin{array}{cc}
\delta^{J} \alpha-\delta^{J} \beta \delta^{-1} \gamma & 0 \\
\delta^{-1} \gamma & 1
\end{array}\right),\left(\begin{array}{cc}
-\phi_{2}\left[\delta^{-1} \gamma\right]+\phi_{1} & \tilde{m} \\
& 0
\end{array}\right)\right)
$$

for some $\tilde{m} \in M$. Since the upper right entry in the first matrix of this element of $\mathcal{U}(R, \Phi)$ is 0 we obtain $\tilde{m}=0$ and similarly $\delta^{J} \alpha-\delta^{J} \beta \delta^{-1} \gamma=1$ and we get

$$
d\left(\left(\delta, \phi_{2}\right)\right)^{-1} X=\left(\left(\begin{array}{cc}
1 & 0 \\
\delta^{-1} \gamma & 1
\end{array}\right),\left(\begin{array}{cc}
-\phi_{2}\left[\delta^{-1} \gamma\right]+\phi_{1} & 0 \\
& 0
\end{array}\right)\right)
$$

Furthermore,
$H_{1,1,1}=\left(\left(\begin{array}{cc}0 & 1 \\ -\epsilon^{J} & 0\end{array}\right),\left(\begin{array}{cc}0 & \psi(-\epsilon) \\ & 0\end{array}\right)\right), H_{1,1,1}^{-1}=\left(\left(\begin{array}{cc}0 & -\epsilon \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & \psi(-\epsilon) \\ 0\end{array}\right)\right)$.
Then we have

$$
\left(d\left(\left(\delta, \phi_{2}\right)\right)^{-1} X\right)^{H_{1,1,1}}=\left(\left(\begin{array}{cc}
1 & -\epsilon \delta^{-1} \gamma \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & m^{\prime} \\
& \phi
\end{array}\right)\right)
$$

with some $m^{\prime} \in M$ and

$$
\phi=\left\{\left\{\psi\left(-\epsilon \delta^{-1} \gamma\right)\right\}-\phi_{2}\left[\delta^{-1} \gamma\right]+\phi_{1} \in \Gamma,\right.
$$

since $-\epsilon \delta^{-1} \gamma \in I$ and $\phi_{1}, \phi_{2} \in \Gamma$. Again $m^{\prime}=0$ since the lower left entry in the first matrix is 0 . Hence

$$
H_{1,1,1}^{-1} d\left(\left(\delta, \phi_{2}\right)\right)^{-1} X H_{1,1,1}=d((1, \phi)) \in \operatorname{ker}(\overline{\mathrm{res}})
$$

as claimed.
We now conclude the proof of Theorem 1 by showing
Lemma 13. The map $\left.\nu\right|_{\mathrm{ker}(\mathrm{res})}$ is surjective, that is, $\operatorname{Im}\left(\left.\nu\right|_{\mathrm{ker}(\mathrm{res})}\right)=\operatorname{ker}(\mathrm{res})$.
Proof. We show that there exists a symmetric idempotent $\iota \in I$ such that

$$
X=\underbrace{\left(\left(\begin{array}{cc}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right),\left(\begin{array}{ll}
\phi_{1}^{\prime} & \mu^{\prime} \\
& \phi_{2}^{\prime}
\end{array}\right)\right)}_{=: X^{\prime}} H_{\iota, u_{\iota}, v_{\iota}}
$$

and $\delta^{\prime} \in R^{*}$. Since $\iota \in I=\operatorname{ker}(\rho / C)$ the set $\iota\left(C^{\perp} / C\right)=\{0\}$ and hence $h_{\iota, u_{\iota}, v_{\iota}} \in$ $\operatorname{ker}(\mathrm{res})$. By Lemma $12 X^{\prime} \in \operatorname{Im}\left(\left.\nu\right|_{\mathrm{ker}(\mathrm{res})}\right)$, so the same holds for X.

Now let us construct ι. The ring $R / \operatorname{rad} R$ is a direct sum of matrix rings over skew fields. Thus there exist $u_{1}, u_{2} \in R^{*}$ such that $u_{1} \delta u_{2}$ is an idempotent modulo $\operatorname{rad} R$. After conjugating with u_{2} we obtain an idempotent $\tilde{u} \delta+\operatorname{rad} R \in R / \operatorname{rad} R$ with $\tilde{u} \in R^{*}$. Since $\tilde{u} \delta+(I+\operatorname{rad} R) \in R /(I+\operatorname{rad} R)$ is an idempotent as well and $\delta \in 1+I$ is a unit modulo $I+\operatorname{rad} R$, it follows that $\tilde{u} \in 1+(I+\operatorname{rad} R)$. We can even assume that $\tilde{u} \in 1+I$. If $\tilde{u}=1+i+r$ with $i \in I$ and $r \in \operatorname{rad} R$ then $(1+i) \delta=(\tilde{u}-r) \delta$ is an idempotent $\bmod \operatorname{rad} R$. Additionally, from $\tilde{u} \in R^{*}$ we get $1+i \in R^{*}$, so we can assume $\tilde{u}=1+i$. Now $d((\tilde{u}, 0)) \in \operatorname{ker}(\overline{\mathrm{res}})$, thus

$$
\begin{aligned}
X \in \operatorname{ker}(\overline{\mathrm{res}}) & \Leftrightarrow d((\tilde{u}, 0)) X \in \operatorname{ker}(\overline{\mathrm{res}}) \\
& \Leftrightarrow\left(\left(\begin{array}{cc}
\tilde{u}^{-J} \alpha & \tilde{u}^{-J} \beta \\
\tilde{u} \gamma & \tilde{u} \delta
\end{array}\right),\left(\begin{array}{cc}
\phi_{1} & \mu \\
& \phi_{2}
\end{array}\right)\right) \in \operatorname{ker}(\overline{\mathrm{res}})
\end{aligned}
$$

Thus we can assume that $\delta+\operatorname{rad} R \in R / \operatorname{rad} R$ is an idempotent.
In the hyperbolic counitary group $\mathcal{U}(R / \operatorname{rad} R, \Phi / \tilde{\Gamma})$ there is

$$
\tilde{X}:=\left(\left(\begin{array}{cc}
\alpha+\operatorname{rad} R & \beta+\operatorname{rad} R \\
\gamma+\operatorname{rad} R & \delta+\operatorname{rad} R
\end{array}\right),\left(\begin{array}{cc}
\phi_{1}+\tilde{\Gamma} & \mu+\psi(\operatorname{rad} R) \\
\phi_{2}+\tilde{\Gamma}
\end{array}\right)\right)
$$

Lemma 7 says that $e:=(1-\delta)+\operatorname{rad} R$ is a symmetric idempotent of $R / \operatorname{rad} R$; more precisely, we may write $e=u_{e} v_{e}$ with

$$
\begin{aligned}
& u_{e}=-e \epsilon^{-1} \gamma^{J} e^{J}+\operatorname{rad} R, \\
& v_{e}=e^{J} \beta e^{J}+\operatorname{rad} R .
\end{aligned}
$$

By Lemma 9 we obtain a symmetric idempotent

$$
\iota:=e+x=1-\delta+x \in I
$$

with $x \in \operatorname{rad} R \cap I$. We calculate the projection on the first component

$$
\pi\left(X H_{\iota, u_{\iota}, v_{\iota}}^{-1}\right)=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{cc}
\delta^{J}-x^{J} & -v_{\iota}^{J} \epsilon \\
u_{\iota}^{J} & \delta-x
\end{array}\right)=\left(\begin{array}{cc}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)
$$

with $\delta^{\prime}=-\gamma v_{\iota}^{J} \epsilon+\delta-\delta x$. It remains to show that $\delta^{\prime} \in R^{*}$. Lemma 10 gives $v_{\iota} \equiv\left(1-\delta^{J}\right) \beta(1-\delta) \bmod \operatorname{rad} R$. Also $\delta x \in \operatorname{rad}(R)$, so it remains to show that

$$
\widetilde{\delta}^{\prime}:=-\gamma\left(1-\delta^{J}\right) \beta^{J} \epsilon(1-\delta)+\delta \in R^{*} .
$$

We observe that $\widetilde{\delta^{\prime}} \delta=-\gamma\left(1-\delta^{J}\right) \beta^{J} \epsilon \underbrace{(1-\delta) \delta}_{=0}+\delta^{2}=\delta$ and

$$
\begin{aligned}
(1-\delta) \widetilde{\delta^{\prime}} & =-(1-\delta) \gamma\left(1-\delta^{J}\right) \beta^{J} \epsilon(1-\delta)= \\
-(1-\delta) \gamma \beta^{J} \epsilon(1-\delta)+\underbrace{(1-\delta) \gamma \delta^{J} \beta^{J} \epsilon(1-\delta)}_{=0, \text { since } \gamma \delta^{J}=\delta \epsilon^{J} \gamma^{J}} & =-(1-\delta) \gamma \beta^{J} \epsilon+(1-\delta) \gamma \underbrace{\beta^{J} \epsilon \delta}_{=\delta^{J} \beta}= \\
-(1-\delta) \underbrace{\gamma \beta^{J} \epsilon}_{=\delta \epsilon^{J} \alpha^{J} \epsilon-1}+\underbrace{(1-\delta) \gamma \delta^{J} \beta}_{=0} & =1-\delta .
\end{aligned}
$$

Particularly, $(1-\delta)\left(2-\widetilde{\delta^{\prime}}\right)=1-\delta$. Now we see that $\widetilde{\delta^{\prime}}$ is a unit since

$$
\widetilde{\delta^{\prime}}\left(2-\widetilde{\delta^{\prime}}\right)=\widetilde{\delta^{\prime}}(\delta+(1-\delta))\left(2-\widetilde{\delta^{\prime}}\right)=\widetilde{\delta^{\prime}}-\delta \widetilde{\delta^{\prime}}+\delta=1-\delta+\delta=1
$$

References

[1] A. Günther, Self-dual group ring codes. PhD Thesis, RWTH Aachen University, in preparation
[2] H. Nagao, Y. Tsushima, Representations of finite groups. Academic Press (1988)
[3] G. Nebe, E.M. Rains, N.J.A. Sloane, Self-dual codes and invariant theory. Springer (2006)

