CLIFFORD-WEIL GROUPS OF QUOTIENT REPRESENTATIONS.

Annika Günther

Lehrstuhl D für Mathematik, RWTH Aachen University 52056 Aachen, Germany annika.quenther@math.rwth-aachen.de

Gabriele Nebe

Lehrstuhl D für Mathematik, RWTH Aachen University 52056 Aachen, Germany nebe@math.rwth-aachen.de

ERIC M. RAINS

Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, U.S.A., rains@caltech.edu

ABSTRACT. This note gives an explicit proof that the scalar subgroup of the Clifford-Weil group remains unchanged when passing to the quotient representation filling a gap in [3]. For other current and future errata to [3] see http://www.research.att.com/~njas/doc/cliff2.html/.

1. Introduction

All notations in this paper are introduced in detail in [3] and we refer to this book for their definitions. One main goal of the book is to introduce a unified language to describe the Type of self-dual codes combining the different notions of self-duality and Types, that are well established in coding theory. The Type of a code is a finite representation $\rho = (V, \rho_M, \rho_\Phi, \beta)$ of a finite form ring $\mathcal{R} = (R, M, \psi, \Phi)$. The finite alphabet V is a left module for the ring R and the biadditive form $\beta: V \times V \to \mathbb{Q}/\mathbb{Z}$ defines the notion of duality. A code C of length N is then an R-submodule of V^N and the dual code is

$$C^{\perp} = \{ v \in V^N \mid \sum_{i=1}^N \beta(v_i, c_i) = 0 \ \forall c \in C \}.$$

©2008 Aulona Press (Albanian J. Math.)

Additional properties of codes of a given Type are encoded in the R-qmodule $\rho_{\Phi}(\Phi)$ which is a certain subgroup of the group of quadratic mappings $V \to \mathbb{Q}/\mathbb{Z}$. A code $C \leq V^N$ is *isotropic*, if $C \leq C^{\perp}$ and

$$\sum_{i=1}^{N} \rho_{\Phi}(\phi)(c_i) = 0 \text{ for all } \phi \in \Phi \text{ and for all } c \in C.$$

Given a finite representation ρ , one associates a finite subgroup $\mathcal{C}(\rho)$ of $\mathrm{GL}(\mathbb{C}[V])$, called the associated Clifford-Weil group (see Section 2). For certain finite form rings (including direct products of matrix rings over finite Galois rings) it is shown in [3, Theorem 5.5.7] that the ring of polynomial invariants of $\mathcal{C}(\rho)$ is spanned by the complete weight-enumerators of self-dual isotropic codes of Type ρ . We conjecture that this theorem holds for arbitrary finite form rings. It is shown in [3, Theorem 5.4.13, 5.5.3] that in general the order of the scalar subgroup

$$\mathcal{S}(\mathcal{C}(\rho)) = \mathcal{C}(\rho) \cap \mathbb{C}^* \operatorname{id}_{\mathbb{C}[V]}$$

is exactly the greatest common divisor of the lengths of self-dual isotropic codes of Type ρ . The proof of this theorem uses the fact that the scalar subgroup of $\mathcal{C}(\rho)$ remains unchanged when passing to the quotient representation. The aim of the present note is to give a full proof of this statement, Theorem 1.

Throughout the note we fix an isotropic code $C \leq C^{\perp} \leq V$ in ρ . Then the quotient representation ρ/C is defined by

$$\rho/C := (C^{\perp}/C, \rho_M/C, \rho_{\Phi}/C, \beta/C),$$

where $(\rho_M/C(m))(v+C, w+C) = \rho_M(m)(v, w), (\rho_{\Phi}/C(\phi))(v+C) = \rho_{\Phi}(\phi)(v),$ and $\beta/C(v+C, w+C) = \beta(v, w)$ for all $v, w \in C^{\perp}, m \in M, \phi \in \Phi$.

Theorem 1. Let $\mathcal{R} = (R, M, \psi, \Phi)$ be a finite form-ring and let $\rho = (V, \rho_M, \rho_\Phi, \beta)$ be a finite representation of \mathcal{R} . Let C be an isotropic self-orthogonal code in ρ . Then

$$\mathcal{S}(\mathcal{C}(\rho)) \cong \mathcal{S}(\mathcal{C}(\rho/C)).$$

2. Clifford-Weil groups and hyperbolic counitary groups

The Clifford-Weil group $\mathcal{C}(\rho)$ associated to the finite representation ρ acts linearly on the space $\mathbb{C}[V]$ with basis $[b_v : v \in V]$. It is generated by

$$\begin{array}{ll} m_r: b_v \mapsto b_{rv} & \text{for } r \in R^* \\ d_\phi: b_v \mapsto \exp(2\pi i \rho_\Phi(\phi)(v)) b_v & \text{for } \phi \in \Phi \\ h_{e,u_e,v_e}: b_v \mapsto \frac{1}{|eV|^{1/2}} \sum_{w \in eV} \exp(2\pi i \beta(w,v_ev)) b_{w+(1-e)v} & e^2 = e \in R \text{ symmetric.} \end{array}$$

Recall that the form-ring structure defines an involution J on R. Then an idempotent $e \in R$ is called *symmetric*, if eR and e^JR are isomorphic as right R-modules, which means that there are $u_e \in eRe^J$, $v_e \in e^JRe$ such that $e = u_ev_e$ and $e^J = v_eu_e$.

The Clifford-Weil group $\mathcal{C}(\rho)$ is a projective representation of the hyperbolic counitary group

$$\mathcal{U}(R,\Phi) = U(\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \operatorname{Mat}_2(R), \Phi_2).$$

The elements of $\mathcal{U}(R,\Phi)$ are of the form

(1)
$$X = \left(\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right), \left(\begin{array}{cc} \phi_1 & m \\ & \phi_2 \end{array} \right) \right) \in \operatorname{Mat}_2(R) \times \Phi_2$$

such that

$$\left(\begin{array}{cc} \gamma^J \alpha & \gamma^J \beta \\ \delta^J \alpha - 1 & \delta^J \beta \end{array}\right) = \psi_2^{-1} \left(\begin{array}{cc} \lambda(\phi_1) & m \\ \tau(m) & \lambda(\phi_2) \end{array}\right).$$

A more detailed definition of $\mathcal{U}(R,\Phi)$ can be found in [3, Chapter 5.2]. It is shown in the book that $\mathcal{U}(R,\Phi)$ is generated by the elements

$$d((r,\phi)) = \left(\left(\begin{array}{cc} r^{-J} & r^{-J}\psi^{-1}(\lambda(\phi)) \\ 0 & r \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ & \phi \end{array} \right) \right)$$

with $r \in \mathbb{R}^*, \phi \in \Phi$ and

$$H_{e,u_e,v_e} = \left(\left(\begin{array}{cc} 1 - e^J & v_e \\ -\epsilon^{-1} u_e^J & 1 - e \end{array} \right), \left(\begin{array}{cc} 0 & \psi(-\epsilon e) \\ 0 \end{array} \right) \right),$$

where $e = u_e v_e$ runs through the symmetric idempotents of R.

To formalize the proofs we let $\mathcal{F}(R,\Phi)$ denote the free group on

$$\{\tilde{d}(r,\phi), \tilde{H}_{e,u_e,v_e} \mid r \in R^*, \phi \in \Phi, e = u_e v_e \text{ symmetric idempotent in } R\}.$$

On these generators there are two group epimorphism:

$$\pi: \mathcal{F}(R,\Phi) \to \mathcal{U}(R,\Phi), \tilde{d}(r,\phi) \mapsto d((r,\phi)), \tilde{H}_{e,u_e,v_e} \mapsto H_{e,u_e,v_e}$$

and

(2)
$$p: \mathcal{F}(R, \Phi) \to \mathcal{C}(\rho); \quad \tilde{d}(r, \phi) \mapsto m_r d_{\phi}, \quad \tilde{H}_{e, u_e, v_e} \mapsto h_{e, u_e, v_e}.$$

Theorem 2. $p(\ker(\pi)) \subseteq \mathcal{S}(\mathcal{C}(\rho))$.

If
$$\rho$$
 is faithful (i.e. $\operatorname{Ann}_R(V) = 0 = \ker(\rho_{\Phi})$), then $p(\ker(\pi)) = \mathcal{S}(\mathcal{C}(\rho))$.

This is essentially [3, Theorem 5.3.2]. However the calculations there were omitted so we take the opportunity to give them here for completeness (also since there are a few typos in the proof there). As in [3, Theorem 5.3.2] we define the associated Heisenberg group $\mathcal{E}(V) := V \times V \times \mathbb{Q}/\mathbb{Z}$ with multiplication

$$(z, x, q) \cdot (z', x', q') = (z + z', x + x', q + q' + \beta(x', z)).$$

Then $\mathcal{E}(V)$ acts linearly on $\mathbb{C}[V]$ by

$$(z,x,q)\cdot b_v = \exp(2\pi i(q+\beta(v,z)))b_{v+x}, \quad (z,x,q)\in\mathcal{E}(V), \ v\in V.$$

This yields an absolutely irreducible faithful representation $\Delta: \mathcal{E}(V) \to GL_{|V|}(\mathbb{C})$.

Lemma 3. The hyperbolic counitary group $\mathcal{U}(R,\Phi)$ acts as group automorphisms on $\mathcal{E}(V)$ via

$$\left(\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right), \left(\begin{array}{cc} \phi_1 & m \\ & \phi_2 \end{array} \right) \right) (z, x, q)$$

$$= (\alpha z + \beta x, \gamma z + \delta x, q + \rho_{\Phi}(\phi_1)(z) + \rho_{\Phi}(\phi_2)(x) + \rho_M(m)(z, x)).$$

If ρ is a faithful representation, then this action is faithful.

Also the associated Clifford-Weil group $\mathcal{C}(\rho) \leq \operatorname{GL}(\mathbb{C}[V])$ acts on $\Delta(\mathcal{E}(V)) \cong \mathcal{E}(V)$ by conjugation.

Lemma 4. For $r \in R^*, \phi \in \Phi$ and $(z, x, q) \in \mathcal{E}(V)$ we have

$$\Delta(d((r,\phi))(z,x,q)) = (m_r d_\phi) \Delta((z,x,q)) (m_r d_\phi)^{-1}.$$

Proof. The proof is an easy calculation.

$$d((r,\phi))(z,x,q) = (r^{-J}z + r^{-J}\psi^{-1}(\lambda(\phi))x, rx, q + \rho_{\Phi}(\phi)(x))$$

maps the basis element b_v $(v \in V)$ to

$$\exp(2\pi i(q + \rho_{\Phi}(\phi)(x) + \beta(v, r^{-J}z + r^{-J}\psi^{-1}(\lambda(\phi))x)))b_{v+rx}.$$

On the other hand

$$(m_r d_\phi) \Delta((z, x, q)) (m_r d_\phi)^{-1}(b_v) =$$

$$= m_r d_\phi \exp(2\pi i (q - \rho_\Phi(\phi)(r^{-1}v) + \beta(r^{-1}v, z)) (b_{r^{-1}v+x})$$

$$= \exp(2\pi i (q - \rho_\Phi(\phi)(r^{-1}v) + \beta(r^{-1}v, z) + \rho_\Phi(\phi)(r^{-1}v + x))) (b_{v+rx})$$

$$= \exp(2\pi i (q + \beta(r^{-1}v, z) + \rho_M(\lambda(\phi))(r^{-1}v, x))) (b_{v+rx})$$

which is the same as the above, since $\beta(r^{-1}v,z)=\beta(v,r^{-J}z)$ by definition of the involution J and

$$\rho_M(\lambda(\phi))(r^{-1}v, x) = \beta(r^{-1}v, \psi^{-1}(\lambda(\phi))x) = \beta(v, r^{-J}\psi^{-1}(\lambda(\phi))x).$$

Lemma 5. For $e = u_e v_e$ a symmetric idempotent in R and $(z, x, q) \in \mathcal{E}(V)$

$$\Delta(H_{e,u_e,v_e}(z,x,q)) = h_{e,u_e,v_e}\Delta((z,x,q))h_{e,u_e,v_e}^{-1}.$$

Proof. The group $\mathcal{E}(V)$ is generated by (z,0,0),(0,x,0),(0,0,q) where $z\in e^JV\cup(1-e^J)V,\,x\in eV\cup(1-e)V,\,q\in\mathbb{Q}/\mathbb{Z}$ and it is enough to check the lemma for these 5 types of generators. For (0,0,q) this is clear. Similarly, if $z\in(1-e^J)V$ and $x\in(1-e)V$, then both sides yield $\Delta((z,x,q))$ as one easily checks. For $z\in e^JV$, $x\in eV,\,q\in\mathbb{Q}/\mathbb{Z}$

$$H_{e,u_e,v_e}(z,x,q) = (v_e x, -\epsilon^{-1} u_e^J z, q + \beta(z,-\epsilon x)).$$

To calculate the right hand side, we note that according to the decomposition

$$V = eV \oplus (1 - e)V$$

the space $\mathbb{C}[V] = \mathbb{C}[eV] \otimes \mathbb{C}[(1-e)V]$ is a tensor product and

$$h_{e,u_e,v_e} = (h_{e,u_e,v_e})_{\mathbb{C}[eV]} \otimes \mathrm{id}_{\mathbb{C}[(1-e)V]}$$
.

Moreover, the permutation matrix $\Delta((0, x, 0)) : b_v \mapsto b_{v+x}$ for $x \in eV$ is a tensor product $p_x \otimes \text{id}$ and similarly the diagonal matrix $\Delta((z, 0, 0))$ for $z \in e^J V$ is a tensor product $d_z \otimes \text{id}$. It is therefore enough to calculate the action on elements of $\mathbb{C}[eV]$. For $z = e^J z \in e^J V$, $x = ex \in eV$ and $v = ev \in eV$, we get

$$\begin{split} & h_{e,u_e,v_e} \circ \Delta((e^J z,0,0)) \circ h_{e,u_e,v_e}^{-1} b_v = \\ & = h_{e,u_e,v_e} (|eV|^{-1/2} \sum_{w \in eV} \exp(2\pi i (\beta(-\epsilon^{-1} v_e^J \epsilon v, w) + \beta(w,e^J z))) b_w) \\ & = |eV|^{-1} \sum_{w' \in eV} \sum_{w \in eV} \exp(2\pi i (\beta(-\epsilon^{-1} v_e^J \epsilon v, w) + \beta(w,e^J z) + \beta(w',v_e w))) b_{w'}. \end{split}$$

Now $\beta(-\epsilon^{-1}v_e^J\epsilon v, w) + \beta(w, e^Jz) + \beta(w', v_ew) = \beta(-\epsilon^{-1}v_e^J\epsilon v + \epsilon^{-1}z + \epsilon^{-1}v_e^J\epsilon w', w)$. Hence the sum over all w is non-zero, only if $-v_e^J\epsilon v + z + v_e^J\epsilon w' = 0$ which implies

that $w' = v - \epsilon^{-1} u_e^J z$. Hence $h_{e,u_e,v_e} \circ \Delta((e^J z,0,0)) \circ h_{e,u_e,v_e}^{-1} b_v = b_{v-\epsilon^{-1} u_e^J z}$. A similar calculation yields

$$\begin{split} &h_{e,u_e,v_e} \circ \Delta((0,ex,0)) \circ h_{e,u_e,v_e}^{-1} b_v = \\ &= h_{e,u_e,v_e} (|eV|^{-1/2} \sum_{w \in eV} \exp(2\pi i (\beta(-\epsilon^{-1} v_e^J \epsilon v, w))) b_{w+ex}) \\ &= h_{e,u_e,v_e} (|eV|^{-1/2} \sum_{w \in eV} \exp(2\pi i (\beta(-\epsilon^{-1} v_e^J \epsilon v, w - ex))) b_w) \\ &= h_{e,u_e,v_e} \circ h_{e,u_e,v_e}^{-1} (\exp(2\pi i (\beta(\epsilon^{-1} v_e^J \epsilon v, ex))) b_v) \\ &= \exp(2\pi i (\beta(v,v_ex))) b_v. \end{split}$$

Proof. (of Theorem 2) That $p(\ker(\pi)) \subseteq \mathcal{S}(\mathcal{C}(\rho))$ follows from Lemma 4 and 5. Assume now that ρ is faithful. Then by Lemma 3 the action of $\mathcal{U}(R,\Phi)$ on $\mathcal{E}(V)$ is faithful: Let $s \in \mathcal{S}(\mathcal{C}(\rho))$. Then there is some $f \in \mathcal{F}(R,\Phi)$ with p(f) = s since p is surjective. Moreover the action of $\pi(f) \in \mathcal{U}(R,\Phi)$ and $p(f) \in \mathcal{C}(\rho)$ on $\mathcal{E}(V)$ coincide, so $\pi(f)$ acts trivially on $\mathcal{E}(V)$ and therefore $f \in \ker(\pi)$.

Remark 6. Let ρ be faithful. Lemma 4 and 5 show that every element $a \in \mathcal{C}(\rho)$ induces an automorphism α on $\mathcal{E}(V)$ that is in $\mathcal{U}(R,\Phi)$. The latter group acts faithfully on $\mathcal{E}(V)$ by Lemma 3 hence $\alpha \in \mathcal{U}(R,\Phi)$ is uniquely determined. This defines a group epimorphism

$$\nu: \mathcal{C}(\rho) \to \mathcal{U}(R, \Phi), \ a \mapsto \alpha.$$

The kernel of ν is precisely the scalar subgroup $\mathcal{S}(\mathcal{C}(\rho))$. The inverse homomorphism is

$$\theta: \mathcal{U}(R, \Phi) \to \mathcal{C}(\rho)/\mathcal{S}(\mathcal{C}(\rho)), \ u \mapsto p(\pi^{-1}(u))$$

which is well defined by Theorem 2.

For the calculations in Section 5 we need the following lemma.

Lemma 7. Let $X \in \mathcal{U}(R, \Phi)$ be as in (1). If $\delta^2 = \delta$ then $\iota := 1 - \delta$ is a symmetric idempotent of R.

Proof. We define $u_{\iota} = -\iota \gamma^{J} \iota^{J}$, $v_{\iota} = \iota^{J} \beta \iota$ and calculate

$$u_{\iota}v_{\iota} = -(1-\delta)\epsilon^{-1}\gamma^{J}(1-\delta^{J})\beta(1-\delta)$$

$$= -(1-\delta)\epsilon^{-1}\underbrace{\gamma^{J}\beta}_{=\alpha^{J}\epsilon\delta-\epsilon}(1-\delta) + (1-\delta)\epsilon^{-1}\gamma^{J}\underbrace{\delta^{J}\beta}_{=\beta^{J}\epsilon\delta}(1-\delta)$$

$$= (1-\delta)\epsilon^{-1}\epsilon(1-\delta) = 1-\delta = \iota$$

and

$$v_{\iota}u_{\iota} = -(1 - \delta^{J})\beta(1 - \delta)\epsilon^{-1}\gamma^{J}(1 - \delta^{J})$$

$$= -(1 - \delta^{J})\underbrace{\beta\epsilon^{-1}\gamma^{J}}_{=\alpha\delta^{J} - 1}(1 - \delta^{J}) + (1 - \delta^{J})\beta\underbrace{\delta\epsilon^{-1}\gamma^{J}}_{=\gamma\delta^{J}}(1 - \delta^{J})$$

$$= -(1 - \delta^{J})(-1)(1 - \delta^{J}) = 1 - \delta^{J} = \iota^{J}.$$

3.
$$\mathcal{S}(\mathcal{C}(\rho)) \leq \mathcal{S}(\mathcal{C}(\rho/C))$$

The Clifford-Weil group $\mathcal{C}(\rho/C)$ can be derived from $\mathcal{C}(\rho)$ by restricting the operation of $\mathcal{C}(\rho)$ to a submodule of $\mathbb{C}[V]$.

Lemma 8. The group $C(\rho)$ acts on a submodule of $\mathbb{C}[V]$ isomorphic to $\mathbb{C}[C^{\perp}/C]$. This yields a representation

res :
$$\mathcal{C}(\rho) \to \mathrm{GL}(\mathbb{C}[C^{\perp}/C])$$

with $\operatorname{res}(\mathcal{C}(\rho)) \leq \mathcal{C}(\rho/C)$. For the scalar subgroups we get $\operatorname{ker}(\operatorname{res}) \cap \mathcal{S}(\mathcal{C}(\rho)) = \{1\}$ and hence $\mathcal{S}(\mathcal{C}(\rho))$ is isomorphic to a subgroup of $\mathcal{S}(\mathcal{C}(\rho/C))$.

Proof. Let Rep denote a set of coset representatives of C^{\perp}/C . We define a subspace

$$U := \{ \sum_{v \in \text{Rep}} \sum_{c \in C} a_v b_{v+c} \mid a_v \in \mathbb{C} \} \le \mathbb{C}[V].$$

This subspace is isomorphic to $\mathbb{C}[C^{\perp}/C]$ via

$$f: \mathbb{C}[C^{\perp}/C] \to U, \ \sum_{v \in \text{Rep}} a_v b_{v+C} \mapsto \sum_{v \in \text{Rep}} \sum_{c \in C} a_v b_{v+c}.$$

So we have

$$res(x) = f \circ x \circ f^{-1} \in GL(U)$$

for $x \in \mathcal{C}(\rho)$. Particularly, if $x = s \cdot \mathrm{id}_{\mathbb{C}[V]}$ then $\mathrm{res}(x) = s \cdot \mathrm{id}_{\mathbb{C}[C^{\perp}/C]}$ and hence the restriction of res to the scalar subgroup of $\mathcal{C}(\rho)$ is injective.

We now will show that

$$\star_H \qquad \qquad f \circ p(\tilde{H}_{e,u_e,v_e}) \circ f^{-1} = p/C(\tilde{H}_{e,u_e,v_e})$$

and

$$\star_d \qquad \qquad f \circ p(\tilde{d}((r,\phi))) \circ f^{-1} = p/C(\tilde{d}((r,\phi)))$$

where $p: \mathcal{F}(R,\Phi) \to \mathcal{C}(\rho)$ and $p/C: \mathcal{F}(R,\Phi) \to \mathcal{C}(\rho/C)$ denote the group homomorphisms as defined (2). So we have $\operatorname{Im}(\operatorname{res}) \leq \mathcal{C}(\rho/C) = \operatorname{Im}(p/C)$ which shows the lemma

To prove \star_H let $v+C \in C^{\perp}/C$ and let T denote a set of coset representatives of $eC^{\perp}/eC \cong eC^{\perp}/C$. Then

$$f^{-1} \circ p(\tilde{H}_{e,u_e,v_e}) \circ f(b_{v+C}) = f^{-1} \circ p(\tilde{H}_{e,u_e,v_e}) (\sum_{c \in C} b_{v+c})$$

$$= f^{-1} (\sum_{c \in C} |eV|^{-\frac{1}{2}} \sum_{w \in eV} \exp(2\pi i\beta(w, v_e(v+c))) b_{w+(1-e)(v+c)})$$

$$= f^{-1} (|eV|^{-\frac{1}{2}} \sum_{w \in eV} \exp(2\pi i\beta(w, v_ev)) \sum_{c' \in (1-e)C} \cdot \sum_{w \in eC} \exp(2\pi i\beta(w, v_ec)) b_{w+(1-e)(v+c')})$$

$$= \begin{cases} |eC|, & w \in eC^{\perp}, \\ 0 & \text{otherwise.} \end{cases}$$

$$= f^{-1} (\frac{|eC|}{|eV|^{\frac{1}{2}}} \sum_{w \in eC^{\perp}} \sum_{c' \in (1-e)C} \exp(2\pi i\beta(w, v_ev)) b_{w+(1-e)(v+c')})$$

$$= f^{-1} (\frac{|eC|}{|eV|^{\frac{1}{2}}} \sum_{w \in T} \sum_{c' \in (1-e)C} \sum_{c \in eC} \exp(2\pi i\beta(w, v_ev)) b_{w+c+(1-e)(v+c')})$$

$$= f^{-1} (\frac{|eC|}{|eV|^{\frac{1}{2}}} \sum_{w \in T} \exp(2\pi i\beta(w, v_ev)) \sum_{c \in C} b_{w+(1-e)v} + c)$$

$$= |eC^{\perp}/C|^{-\frac{1}{2}} \sum_{w \in eC^{\perp}/C} \exp(2\pi i\beta/C(w, v_e(v+C))) b_{w+(1-e)(v+C)}$$

$$= p/C(\tilde{H}_{e,u_e,v_e}) (b_{v+C}).$$

To show \star_d we note that $\rho_{\Phi}(\phi)(c) = 0$ for all $c \in C$ and for all $\phi \in \Phi$ and obtain

$$f^{-1} \circ p(\tilde{d}((r,\phi))) \circ f(b_{v+C}) = f^{-1} \circ p(\tilde{d}((r,\phi))) (\sum_{c \in C} b_{v+c})$$

$$= f^{-1}(p(\tilde{d}((r,0))) \sum_{c \in C} \exp(2\pi i \rho_{\Phi}(\phi)(v+c)) b_{v+c})$$

$$= f^{-1}(\sum_{c \in C} \exp(2\pi i \rho_{\Phi}(\phi)(v)) b_{rv+rc})$$

$$= f^{-1}(\sum_{c \in C} \exp(2\pi i \rho_{\Phi}(\phi)(v)) b_{rv+c})$$

$$= \exp(2\pi i \rho_{\Phi}/C(\phi)(v+C)) b_{r(v+C)})$$

$$= p/C(\tilde{d}((r,\phi))) (b_{v+C}).$$

4. The strategy.

Without loss of generality we now assume that ρ is faithful, that is,

$$\ker(\rho) = (\operatorname{Ann}_R(V), \ker(\rho_{\Phi})) = (0, 0)$$

and let $(I,\Gamma)=\ker(\rho/C)$. We then define $\overline{\mathrm{res}}:\mathcal{U}(R,\Phi)\to\mathcal{U}(R/I,\Phi/\Gamma)$ by

$$\overline{\mathrm{res}}(\left(\left(\begin{array}{cc}\alpha & \beta\\ \gamma & \delta\end{array}\right), \left(\begin{array}{cc}\phi_1 & m\\ & \phi_2\end{array}\right)\right)) = \left(\left(\begin{array}{cc}\alpha + I & \beta + I\\ \gamma + I & \delta + I\end{array}\right), \left(\begin{array}{cc}\phi_1 + \Gamma & m + \psi(I)\\ & \phi_2 + \Gamma\end{array}\right)\right)).$$

By Remark 6 the epimorphism

$$\nu: \mathcal{C}(\rho) \to \mathcal{U}(R, \Phi)$$
 by $\nu(m_r d_\phi) = d((r, \phi)), \ \nu(h_{e, u_e, v_e}) = H_{e, u_e, v_e}$

for $r \in R^*, \phi \in \Phi$ and symmetric idempotents $e = u_e v_e \in R$ is well defined and its kernel is $\mathcal{S}(\mathcal{C}(\rho))$. Similarly $\overline{\nu} : \mathcal{C}(\rho/C) \to \mathcal{U}(R/I, \Phi/\Gamma)$. Then $\nu \circ p = \pi$ and $\overline{\nu} \circ p/C = \pi/C$, where $\pi/C : \mathcal{F}(R/I, \Phi/\Gamma) \to \mathcal{U}(R/I, \Phi/\Gamma)$ is the analogous group epimorphism. Again the representation ρ/C of $(R/I, \Phi/\Gamma)$ is faithful so by Remark 6 the kernel of $\overline{\nu}$ is $\mathcal{S}(\mathcal{C}(\rho/C))$.

We then have the following commutative diagram with exact rows and columns

To see that all sequences are exact, we note that $\nu_{|\ker(\text{res})}$ is injective, since $\ker(\text{res}) \cap \mathcal{S}(\mathcal{C}(\rho)) = 1$. The homomorphisms $\overline{\text{res}}$ and res are surjective, since idempotents and units of R/I lift to idempotents and units of R. Moreover $\overline{\text{res}} \circ \nu = \overline{\nu} \circ \text{res}$ as one checks on the generators.

The claim of Theorem 1 is that \mathcal{Y} is trivial. But this is fulfilled if and only if \mathcal{Y}' is trivial, that is, if $\nu|_{\ker(\text{res})}$ is an isomorphism since

$$|\mathcal{Y}| = \frac{|\mathcal{S}(\mathcal{C}(\rho/C))|}{|\mathcal{S}(\mathcal{C}(\rho))|} = \frac{|\mathcal{C}(\rho/C)| \cdot |\mathcal{U}(R,\Phi)|}{|\mathcal{U}(R/I,\Phi/\Gamma)| \cdot |\mathcal{C}(\rho)|} = \frac{|\ker(\overline{\mathrm{res}})|}{|\ker(\mathrm{res})|} = |\mathcal{Y}'|.$$

5. The surjectivity of
$$\nu|_{\text{ker(res)}}$$

During the proof of Theorem 1 some results on lifting symmetric idempotents are needed, which are stated in the next two lemmata.

Lemma 9. Let R be an Artinian ring and I an ideal of R. If $e \in I + \operatorname{rad} R \subseteq R$ such that $e^2 \equiv e \mod \operatorname{rad} R$ then there exists an idempotent $e' \in I$ such that $e' \equiv e \mod \operatorname{rad} R$.

Proof. We choose $x_0 \in \operatorname{rad} R$ such that $e_0 := e + x_0 \in I$. Then $e_0 + \operatorname{rad} R$ is an idempotent in $R/\operatorname{rad} R$. Since $\operatorname{rad} R$ is a nilpotent ideal of R [2, Theorem 4.9] constructs an idempotent $e' = f(e_0) \in I$ for some polynomial $f \in \mathbb{Z}[X]$ with f(0) = 0 such that $e' + \operatorname{rad} R = e_0 + \operatorname{rad} R$.

By [2, Theorem 4.5] applied to an idempotent $e \in R$, the right-modules eR and $e^{J}R$ are isomorphic, if and only if their quotients modulo rad R are isomorphic. Hence we find

Lemma 10. Let $e + \operatorname{rad} R \in R / \operatorname{rad} R$ be a symmetric idempotent such that

$$e + \operatorname{rad} R = u_e v_e + \operatorname{rad} R, \quad e^J + \operatorname{rad} R = v_e u_e + \operatorname{rad} R,$$

 $u_e + \operatorname{rad} R \in (eRe^J) + \operatorname{rad} R$, $v_e \in (e^JRe) + \operatorname{rad} R$. If $e \in R$ is an idempotent then e is symmetric as well. More precisely, there exist $\tilde{u}_e \in eRe^J$, $\tilde{v}_e \in e^JRe$ such that

$$e = \tilde{u}_e \tilde{v}_e, \ e^J = \tilde{v}_e \tilde{u}_e$$

and $\tilde{v}_e \equiv v_e \mod \operatorname{rad} R$.

For the rest of this note, let

(3)
$$X := \left(\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right), \left(\begin{array}{cc} \phi_1 & m \\ & \phi_2 \end{array} \right) \right) \in \ker(\overline{\text{res}})$$

and let $(I,\Gamma) := \ker(\rho/C)$. In particular, $\alpha, \delta \in 1 + I$, $\beta, \gamma \in I$, $\phi_1, \phi_2 \in \Gamma$ and $m \in \psi(I)$. We have to find some $x \in \ker(\text{res})$ such that $\nu(x) = X$.

Lemma 11. We have $d(P(R, \Phi)) \cap \ker(\overline{res}) \subseteq \operatorname{Im}(\nu|_{\ker(res)})$.

Proof. Let $r \in R^*, \phi \in \Phi$ such that $d((r,\phi)) = \nu(m_r d_\phi) \in \ker(\overline{res})$. Then $r \in 1+I$ and $\phi \in \Gamma$. In particular r acts as the identity on C^{\perp}/C and $\rho_{\Phi}/C(\phi) = 0$. This implies that both m_r and $d_\phi \in \ker(res)$.

Lemma 12. Let δ be a unit. Then there exists $x \in \ker(\operatorname{res})$ such that $\nu(x) = X$.

Proof. Since ker(res) is a normal subgroup of $\mathcal{C}(\rho)$ it suffices to show that X is contained in the normal subgroup of $\mathcal{U}(R,\Phi)$ generated by the elements $d(P(R,\Phi)) \cap \ker(\overline{\text{res}})$. We show that there is $\phi \in \Gamma$ such that

$$X = d((\delta, \phi_2))H_{1,1,1}d((1,\phi))H_{1,1,1}^{-1}.$$

We have
$$d((\delta, \phi_2)) = \left(\begin{pmatrix} \delta^{-J} & \beta \\ 0 & \delta \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ & \phi_2 \end{pmatrix} \right)$$
 and hence

$$d((\delta,\phi_2))^{-1} \quad = \quad \left(\left(\begin{array}{cc} \delta^J & -\delta^J \beta \delta^{-1} \\ 0 & \delta^{-1} \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ & -\phi_2[\delta^{-1}] \end{array} \right) \right).$$

We therefore find

$$d((\delta,\phi_2))^{-1}X = \left(\left(\begin{array}{cc} \delta^J \alpha - \delta^J \beta \delta^{-1} \gamma & 0 \\ \delta^{-1} \gamma & 1 \end{array} \right), \left(\begin{array}{cc} -\phi_2[\delta^{-1} \gamma] + \phi_1 & \tilde{m} \\ 0 \end{array} \right) \right)$$

for some $\tilde{m} \in M$. Since the upper right entry in the first matrix of this element of $\mathcal{U}(R,\Phi)$ is 0 we obtain $\tilde{m}=0$ and similarly $\delta^J\alpha-\delta^J\beta\delta^{-1}\gamma=1$ and we get

$$d((\delta,\phi_2))^{-1}X = \left(\left(\begin{array}{cc} 1 & 0 \\ \delta^{-1}\gamma & 1 \end{array} \right), \left(\begin{array}{cc} -\phi_2[\delta^{-1}\gamma] + \phi_1 & 0 \\ 0 & 0 \end{array} \right) \right)$$

Furthermore.

$$H_{1,1,1} = \left(\left(\begin{array}{cc} 0 & 1 \\ -\epsilon^J & 0 \end{array} \right), \left(\begin{array}{cc} 0 & \psi(-\epsilon) \\ 0 \end{array} \right) \right), \ H_{1,1,1}^{-1} = \left(\left(\begin{array}{cc} 0 & -\epsilon \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & \psi(-\epsilon) \\ 0 \end{array} \right) \right).$$

Then we have

$$(d((\delta,\phi_2))^{-1}X)^{H_{1,1,1}} = \left(\begin{pmatrix} 1 & -\epsilon\delta^{-1}\gamma \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & m' \\ & \phi \end{pmatrix} \right),$$

with some $m' \in M$ and

$$\phi = \{ \{ \psi(-\epsilon \delta^{-1} \gamma) \} \} - \phi_2[\delta^{-1} \gamma] + \phi_1 \in \Gamma,$$

since $-\epsilon \delta^{-1} \gamma \in I$ and $\phi_1, \phi_2 \in \Gamma$. Again m' = 0 since the lower left entry in the first matrix is 0. Hence

$$H_{1,1,1}^{-1}d((\delta,\phi_2))^{-1}XH_{1,1,1}=d((1,\phi))\in\ker(\overline{\text{res}})$$

as claimed.

We now conclude the proof of Theorem 1 by showing

Lemma 13. The map $\nu|_{\ker(\text{res})}$ is surjective, that is, $\operatorname{Im}(\nu|_{\ker(\text{res})}) = \ker(\overline{\text{res}})$.

Proof. We show that there exists a symmetric idempotent $\iota \in I$ such that

$$X = \underbrace{\left(\left(\begin{array}{cc} \alpha' & \beta' \\ \gamma' & \delta' \end{array} \right), \left(\begin{array}{cc} \phi_1' & \mu' \\ & \phi_2' \end{array} \right) \right)}_{=:X'} H_{\iota, u_{\iota}, v_{\iota}}$$

and $\delta' \in R^*$. Since $\iota \in I = \ker(\rho/C)$ the set $\iota(C^{\perp}/C) = \{0\}$ and hence $h_{\iota,u_{\iota},v_{\iota}} \in \ker(\text{res})$. By Lemma 12 $X' \in \operatorname{Im}(\nu|_{\ker(\text{res})})$, so the same holds for X.

Now let us construct ι . The ring $R/\operatorname{rad} R$ is a direct sum of matrix rings over skew fields. Thus there exist $u_1, u_2 \in R^*$ such that $u_1 \delta u_2$ is an idempotent modulo rad R. After conjugating with u_2 we obtain an idempotent $\tilde{u}\delta + \operatorname{rad} R \in R/\operatorname{rad} R$ with $\tilde{u} \in R^*$. Since $\tilde{u}\delta + (I + \operatorname{rad} R) \in R/(I + \operatorname{rad} R)$ is an idempotent as well and $\delta \in 1 + I$ is a unit modulo $I + \operatorname{rad} R$, it follows that $\tilde{u} \in 1 + (I + \operatorname{rad} R)$. We can even assume that $\tilde{u} \in 1 + I$. If $\tilde{u} = 1 + i + r$ with $i \in I$ and $r \in \operatorname{rad} R$ then $(1+i)\delta = (\tilde{u}-r)\delta$ is an idempotent mod rad R. Additionally, from $\tilde{u} \in R^*$ we get $1+i \in R^*$, so we can assume $\tilde{u} = 1+i$. Now $d((\tilde{u},0)) \in \ker(\overline{\operatorname{res}})$, thus

$$\begin{array}{lll} X \in \ker(\overline{\mathrm{res}}) & \Leftrightarrow & d((\tilde{u},0))X \in \ker(\overline{\mathrm{res}}) \\ & \Leftrightarrow & \left(\left(\begin{array}{cc} \tilde{u}^{-J}\alpha & \tilde{u}^{-J}\beta \\ \tilde{u}\gamma & \tilde{u}\delta \end{array} \right), \left(\begin{array}{cc} \phi_1 & \mu \\ & \phi_2 \end{array} \right) \right) \in \ker(\overline{\mathrm{res}}) \end{array}$$

Thus we can assume that $\delta + \operatorname{rad} R \in R/\operatorname{rad} R$ is an idempotent. In the hyperbolic counitary group $\mathcal{U}(R/\operatorname{rad} R, \Phi/\tilde{\Gamma})$ there is

$$\tilde{X} := \left(\left(\begin{array}{cc} \alpha + \operatorname{rad} R & \beta + \operatorname{rad} R \\ \gamma + \operatorname{rad} R & \delta + \operatorname{rad} R \end{array} \right), \left(\begin{array}{cc} \phi_1 + \tilde{\Gamma} & \mu + \psi(\operatorname{rad} R) \\ \phi_2 + \tilde{\Gamma} \end{array} \right) \right)$$

Lemma 7 says that $e := (1 - \delta) + \operatorname{rad} R$ is a symmetric idempotent of $R/\operatorname{rad} R$; more precisely, we may write $e = u_e v_e$ with

$$\begin{aligned} u_e &= -e\epsilon^{-1}\gamma^J e^J + \operatorname{rad} R, \\ v_e &= e^J \beta e^J + \operatorname{rad} R. \end{aligned}$$

By Lemma 9 we obtain a symmetric idempotent

$$\iota := e + x = 1 - \delta + x \in I$$

with $x \in \operatorname{rad} R \cap I$. We calculate the projection on the first component

$$\pi(XH_{\iota,u_{\iota},v_{\iota}}^{-1}) = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \delta^{J} - x^{J} & -v_{\iota}^{J} \epsilon \\ u_{\iota}^{J} & \delta - x \end{pmatrix} = \begin{pmatrix} \alpha' & \beta' \\ \gamma' & \delta' \end{pmatrix}$$

with $\delta' = -\gamma v_{\iota}^{J} \epsilon + \delta - \delta x$. It remains to show that $\delta' \in R^*$. Lemma 10 gives $v_{\iota} \equiv (1 - \delta^{J})\beta(1 - \delta) \mod \operatorname{rad} R$. Also $\delta x \in \operatorname{rad}(R)$, so it remains to show that

$$\widetilde{\delta'} := -\gamma(1 - \delta^J)\beta^J\epsilon(1 - \delta) + \delta \in R^*.$$

We observe that
$$\widetilde{\delta'}\delta = -\gamma(1-\delta^J)\beta^J\epsilon\underbrace{(1-\delta)\delta}_{=0} + \delta^2 = \delta$$
 and
$$\underbrace{(1-\delta)\widetilde{\delta'}}_{=0} = -(1-\delta)\gamma(1-\delta^J)\beta^J\epsilon(1-\delta) = \\ -(1-\delta)\gamma\beta^J\epsilon(1-\delta) + \underbrace{(1-\delta)\gamma\delta^J\beta^J\epsilon(1-\delta)}_{=0, \text{ since } \gamma\delta^J=\delta\epsilon^J\gamma^J}_{=0, \text{ since } \gamma\delta^J=\delta\epsilon^J\gamma^J} = -(1-\delta)\gamma\beta^J\epsilon + (1-\delta)\gamma\underbrace{\beta^J\epsilon}_{=\delta^J\beta} = \\ -(1-\delta)\underbrace{\gamma\beta^J\epsilon}_{=\delta\epsilon^J\alpha^J\epsilon-1} + \underbrace{(1-\delta)\gamma\delta^J\beta}_{=0} = 1-\delta.$$

Particularly, $(1 - \delta)(2 - \widetilde{\delta'}) = 1 - \delta$. Now we see that $\widetilde{\delta'}$ is a unit since

$$\widetilde{\delta'}(2-\widetilde{\delta'}) = \widetilde{\delta'}(\delta+(1-\delta))(2-\widetilde{\delta'}) = \widetilde{\delta'}-\delta\widetilde{\delta'}+\delta = 1-\delta+\delta = 1.$$

References

[1] A. Günther, Self-dual group ring codes. PhD Thesis, RWTH Aachen University, in preparation

[2] H. Nagao, Y. Tsushima, Representations of finite groups. Academic Press (1988)

[3] G. Nebe, E.M. Rains, N.J.A. Sloane, Self-dual codes and invariant theory. Springer (2006)