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EXTRAGRADIENT METHOD FOR EQUILIBRIUM PROBLEMS
AND VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR, YONGHONG YAO, AND YEONG-CHENG LIOU

Abstract. In this paper, we suggest and analyze a new extragradient method

for finding a common element of the set of solutions of an equilibrium problem,

the set of fixed points of a nonexpansive mapping and the set of solutions of
some variational inequality. Furthermore, we prove that the proposed iterative

algorithm converges strongly to a common element of the above three sets. Our

result includes the main result of Bnouhachem, Noor and Hao [A. Bnouhachem,
M.A. Noor and Z. Hao, Some new extragradient methods for variational in-

equalities, Nonlinear Analysis (2008), doi:10.1016/j.na.2008.02.014] as a spe-
cial case.

1. Introduction

Equilibrium problems, which were introduced by Blum and Oettli [21] and Noor
and Oettli [22] in 1994, are being used as mathematical model for studying a wide
class of problems arising in various branches of pure and applied sciences. It has
been shown that equilibrium problems include variational inequalities, fixed point
problems and Nash equilibrium problems as special cases. In recent years, several
iterative methods including extragradient method and auxiliary technique have
been developed for solving equilibrium problems and variational inequalities, see
[16-25] and the references therein. Bnouhachem, Noor and Hao [15] has suggested
and analyzed an extragradient type method for solving variational inequalities.
Motivated and inspired by the on going research in this direction, we suggest and
analyze a new extragradient type method for finding the common element of the
set of solutions of the equilibrium problems, variational inequalities and fixed point
problems of nonexpansive mapping. The proposed iterative method is quite general
and include the recent methods as special cases. Our results can be viewed as a
significant improvement of the recently obtained results.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → H be a nonlinear mapping. The classical variational inequality, denoted
by V I(T,C), is to find u∗ ∈ C such that

〈T (u∗), u− u∗〉 ≥ 0,∀u ∈ C,

which was introduced by Stampacchia [1] in 1964. Since then, the variational
inequality has been extensively studied in the literature. See, e.g., [2-11] and the
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references therein. Recall that a mapping T of C into H is called α-inverse-strongly
monotone if there exists a positive real number α such that

〈T (u)− T (v), u− v〉 ≥ α‖T (u)− T (v)‖2,∀u, v ∈ C.

It is obvious that any α-inverse-strongly monotone mapping T is 1
α Lipschitz con-

tinuous. A mapping S : C → H is said to be nonexpansive if

‖S(u)− S(v)‖ ≤ ‖u− v‖, ∀u, v ∈ C.

Denote the set of fixed points of S by Fix(S).

For finding an element of Fix(S) ∩ V I(T,C) under the assumption that a set
C ⊂ H is closed and convex, a mapping S of C into itself is nonexpasive and a
mapping T of C into H is α-inverse-strongly monotone, Takahashi and Toyoda [12]
introduced the following iterative scheme:

uk+1 = αkuk + (1− αk)S(PC [uk − ρkT (uk)]),∀k ≥ 0,(1)

where PC is the metric projection of H onto C, u0 = u ∈ C, {αk} is a sequence in
(0, 1), and {ρk} is a sequence in (0, 2α). They showed that, if Fix(S) ∩ V I(T,C)
is nonempty, then the sequence {uk} generated by (1) converges weakly to some
z ∈ Fix(S) ∩ V I(T,C). Recently, Nadezhkina and Takahashi [13] introduced a so-
called extragradient method motivated by the idea of Korpelevich [14] for finding a
common element of the set of fixed points of a nonexpansive mapping and the set of
solutions of a variational inequality problem. Zeng and Yao [11] introduced another
extragradient method for finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of a variational inequality problem.
Further, Bnouhachem, Noor and Hao [15] introduced the following extragradient
iterative method:{

ũk = PC [uk − ρkT (uk)],

uk+1 = βkuk + (1− βk)S(αku + (1− αk)PC [uk − ρkT (ũk)]).
(2)

Under mild assumptions, they proved a strong convergence theorem for finding a
common element of the fixed points of a nonexpansive mapping S and the solution
set of the variational inequality for an α-inverse strongly monotone mapping T in
a Hilbert space.

Let F be an equilibrium bifunction of C × C into R, where R is the set of real
numbers. The equilibrium problem for F : C × C →R is to find u ∈ C such that

EP : F (u, v) ≥ 0 for all v ∈ C.

The set of solutions of the equilibrium problem is denoted by EP(F).
For solving the above equilibrium problem, some efforts have been made by many

authors. For the more details, please refer to [15-18] and the references therein.
Motivated and inspired by the works in the literature, in this paper, we intro-

duce an iterative algorithm based on extragradient method for finding a common
element of the set of solutions of an equilibrium problem, the set of fixed points
of a nonexpansive mapping and the set of solutions of some variational inequality.
Furthermore, we prove that the proposed iterative algorithm converges strongly to
a common element of the above three sets. Our result includes the main result
of Bnouhachem, Noor and Hao [A. Bnouhachem, M.A. Noor and Z. Hao, Some
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new extragradient methods for variational inequalities, Nonlinear Analysis (2008),
doi:10.1016/j.na.2008.02.014] as a special case.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and let C
be a closed convex subset of H. It is well known that, for any u ∈ H, there exists
unique y0 ∈ C such that

‖u− y0‖ = inf{‖u− y‖ : y ∈ C}.

We denote y0 by PC [u], where PC is called the metric projection of H onto C. The
metric projection PC of H onto C has the following basic properties:

(i) ‖PC [u]− PC [v]‖ ≤ ‖u− v‖ for all u, v ∈ H,
(ii) 〈u− v, PC [u]− PC [v]〉 ≥ ‖PC [u]− PC [v]‖2 for every u, v ∈ H,
(iii) 〈u− PC [u], v − PC [u]〉 ≤ 0 for all u ∈ H, v ∈ C,
(iv) ‖u− v‖2 ≥ ‖u− PC [u]‖2 + ‖v − PC [u]‖2 for all u ∈ H, v ∈ C.
Let T be a monotone mapping of C into H. In the context of the variational

inequality problem, it is easy to see from (iv) that

u ∈ V I(T,C) ⇔ u = PC [u− λT (u)], ∀λ > 0.

A set-valued mapping A : H → 2H is called monotone if, for all u, v ∈ H, f ∈ Au
and g ∈ Av imply 〈u−v, f −g〉 ≥ 0. A monotone mapping A : H → 2H is maximal
if its graph G(A) is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping A is maximal if and only if, for
(u, f) ∈ H×H, 〈u− v, f − g〉 ≥ 0 for every (v, g) ∈ G(A) implies f ∈ Au. Let T be
a monotone mapping of C into H and let NCv be the normal cone to C at v ∈ C;
i.e.,

NCv = {w ∈ H : 〈v − u, w〉 ≥ 0,∀u ∈ C}.

Define

Av =

{
T (v) + NCv, if v ∈ C,

∅, if v /∈ C.

Then A is maximal monotone and 0 ∈ Av if and only if v ∈ V I(T,C).

In this paper, for solving the equilibrium problems for an equilibrium bifunction
F : C × C →R, we assume that F satisfies the following conditions:

(C1) F (u, u) = 0 for all u ∈ C;
(C2) F is monotone, i.e., F (u, v) + F (v, u) ≤ 0 for all u, v ∈ C;
(C3) for each u, v, w ∈ C, limt↓0 F (tw + (1− t)u, v) ≤ F (u, v);
(C4) for each u ∈ C, v 7→ F (u, v) is convex and lower semicontinuous.
If an equilibrium bifunction F : C × C →R satisfies conditions (C1)-(C4), then

we have the following two important results. You can find them in [16].
Lemma 2.1 Let C be a nonempty closed convex subset of H and let F be an
equilibrium bifunction of C × C into R satisfies conditions (C1)-(C4). Let r > 0
and u ∈ C. Then, there exists v ∈ C such that

F (v, w) +
1
r
〈w − v, v − u〉 ≥ 0 for all w ∈ C.
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Lemma 2.2 Assume that F satisfies the same assumptions as Lemma 2.1. For
r > 0 and u ∈ C, define a mapping Γr : H → C as follows:

Γr(u) = {v ∈ C : F (v, w) +
1
r
〈w − v, v − u〉 ≥ 0,∀w ∈ C}.

Then the following hold:
(1) Γr is single-valued;
(2) Γr is firmly nonexpansive, i.e., for any u, v ∈ H,

‖Γru− Γrv‖2 ≤ 〈Γru− Γrv, u− v〉;

(3) Fix(Γr) = EP (F );
(4) EP (F ) is closed and convex.
We also need the following lemmas for proving our main results.

Lemma 2.3([19]) Let {uk} and {vk} be bounded sequences in a Banach space X
and let {βk} be a sequence in [0, 1] with 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1.
Suppose uk+1 = (1− βk)vk + βkuk for all integers k ≥ 0 and

lim sup
k→∞

(‖vk+1 − vk‖ − ‖uk+1 − uk‖) ≤ 0.

Then, limk→∞ ‖vk − uk‖ = 0.

Lemma 2.4([20]) Assume {ak} is a sequence of nonnegative real numbers such that
ak+1 ≤ (1 − γk)ak + δk, where {γk} is a sequence in (0, 1) and {δk} is a sequence
such that

(1)
∑∞

k=1 γk = ∞;
(2) lim supk→∞ δk/γk ≤ 0 or

∑∞
k=1 |δk| < ∞.

Then limk→∞ ak = 0.

3. Iterative algorithms

In this section, we suggest and analyze an iterative algorithm for finding a com-
mon element of the set of solutions of an equilibrium problem, the set of fixed points
of a nonexpansive mapping and the set of solutions of some variational inequality.
Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a
bifunction from C × C →R satisfying (C1)-(C4). Let T be an α-inverse-strongly
monotone mapping of C into H and let S be a nonexpansive mapping of C into
itself such that Fix(S) ∩ V I(T,C) ∩ EP (F ) 6= ∅.
Algorithm 3.1 For fixed u ∈ C and given u0 ∈ C arbitrarily, find the approximate
solution {uk+1} by the iterative schemes:

F (vk, w) +
1
rk
〈w − vk, vk − uk〉 ≥ 0,∀w ∈ C,

ũk = PC [vk − ρkT (vk)],

uk+1 = βkuk + (1− βk)S(αku + (1− αk)PC [vk − ρkT (ũk)]),

(3)

where {αk} and {βk} are two sequences in (0, 1), {ρk} is a sequence in [0, 2α] and
{rk} is a sequence in (0,∞).

If we put F (u, v) ≡ 0 for all u, v ∈ C and rk = 1 for all k ≥ 0 in Algorithm 3.1,
then we have vk = PC [uk] = uk. Then we obtain the following iterative algorithm
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Algorithm 3.2 For fixed u ∈ C and given u0 ∈ C arbitrarily, find the approximate
solution {uk+1} by the iterative schemes:{

ũk = PC [uk − ρkT (uk)],

uk+1 = βkuk + (1− βk)S(αku + (1− αk)PC [uk − ρkT (ũk)]),

where {αk} and {βk} are two sequences in (0, 1), {ρk} is a sequence in [0, 2α] and
{rk} is a sequence in (0,∞).

If we put S ≡ I the identity operator in Algorithm 3.2. Then we obtain the
following iterative algorithm
Algorithm 3.3 For fixed u ∈ C and given u0 ∈ C arbitrarily, find the approximate
solution {uk+1} by the iterative schemes:{

ũk = PC [uk − ρkT (uk)],

uk+1 = βkuk + (1− βk)(αku + (1− αk)PC [uk − ρkT (ũk)]),

where {αk} and {βk} are two sequences in (0, 1), {ρk} is a sequence in [0, 2α] and
{rk} is a sequence in (0,∞).

Let {uk} be a sequence defined by (3). In the sequence, we will assume that the
algorithm parameters satisfy the following restrictions:

(R1) limk→∞ αk = 0 and
∑∞

k=0 αk = ∞;
(R2) 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1;
(R3) limk→∞ ρk = 0;
(R4) lim infk→∞ rk > 0 and limk→∞(rk+1 − rk) = 0.
In order to prove the strong convergence of Algorithm 3.1, we first prove the

following lemmas.
Lemma 3.1 The sequence {uk} is bounded.
Proof. Let u∗ ∈ Fix(S)∩ V I(T,C)∩EP (F ). Then, it is clear that u∗ = PC [u∗ −
ρkT (u∗)] = Γrk

u∗. First, we note that I − ρkT is nonexpansive for all ρk ∈ [0, 2α].
Indeed, by the α-inverse-strongly monotonicity of T , we have

‖(I − ρkT )u− (I − ρkT )v‖2 = ‖u− v‖2 − 2ρk〈T (u)− T (v), u− v〉
+ ρ2

k‖T (u)− T (v)‖2

≤ ‖u− v‖2 + ρk(ρk − 2α)‖T (u)− T (v)‖2

≤ ‖u− v‖2,

which implies that I − ρkT is nonexpansive. Set wk = PC [vk − ρkT (ũk)] for all
k ≥ 0. From the property (iv) of PC , we have

‖wk − u∗‖2 ≤ ‖vk − ρkT (ũk)− u∗‖2 − ‖vk − ρkT (ũk)− wk‖2

= ‖vk − u∗‖2 − 2ρk〈T (ũk), vk − u∗〉+ ρ2
k‖T (ũk)‖2

− ‖vk − wk‖2 + 2ρk〈T (ũk), vk − wk〉 − ρ2
k‖T (ũk)‖2

= ‖vk − u∗‖2 − ‖vk − wk‖2 + 2ρk〈T (ũk), u∗ − wk〉

= ‖vk − u∗‖2 − ‖vk − wk‖2 + 2ρk〈T (ũk)− T (u∗), u∗ − ũk〉

+ 2ρk〈T (u∗), u∗ − ũk〉+ 2ρk〈T (ũk), ũk − wk〉.

(4)

Using the fact that T is monotonic and u∗ is a solution of the variational inequality
problem V I(T,C), we have 〈T (ũk)−T (u∗), u∗− ũk〉 ≤ 0 and 〈T (u∗), u∗− ũk〉 ≤ 0.
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This together with (4) implies that

‖wk − u∗‖2 ≤ ‖vk − u∗‖2 − ‖vk − wk‖2 + 2ρk〈T (ũk), ũk − wk〉

= ‖vk − u∗‖2 − ‖vk − ũk‖2 − 2〈vk − ũk, ũk − wk〉

− ‖ũk − wk‖2 + 2ρk〈T (ũk), ũk − wk〉

= ‖vk − u∗‖2 − ‖vk − ũk‖2 + 2〈vk − ρkT (ũk)− ũk, wk − ũk〉

− ‖ũk − wk‖2.

(5)

By using the property (iii) of PC , we have 〈vk − ρkT (vk) − ũk, wk − ũk〉 ≤ 0.
Therefore, we get

〈vk − ρkT (ũk)− ũk, wk − ũk〉 = 〈vk − ρkT (vk)− ũk, wk − ũk〉

+ ρk〈T (vk)− T (ũk), wk − ũk〉

≤ ρk〈T (vk)− T (ũk), wk − ũk〉

≤ ρk‖T (vk)− T (ũk)‖‖wk − ũk‖

≤ ρk

α
‖vk − ũk‖‖wk − ũk‖.

(6)

Combining (5) and (6), we obtain

‖wk − u∗‖2 ≤ ‖vk − u∗‖2 − ‖vk − ũk‖2 − ‖ũk − wk‖2

+ 2
ρk

α
‖vk − ũk‖‖wk − ũk‖

≤ ‖vk − u∗‖2 − ‖vk − ũk‖2 − ‖ũk − wk‖2

+
ρ2

k

α2
‖vk − ũk‖2 + ‖wk − ũk‖2

= ‖vk − u∗‖2 + (
ρ2

k

α2
− 1)‖vk − ũk‖2.

(7)

Note that limk→∞ ρk = 0, we may assume without loss of generality that ρk < α.
Hence, from (7), we have

‖wk − u∗‖2 ≤ ‖vk − u∗‖2 = ‖Γrk
uk − Γrk

u∗‖2 ≤ ‖uk − u∗‖2.

From (3), we deduce that

‖uk+1 − u∗‖ = ‖βk(uk − u∗) + (1− βk)(S(αku + (1− αk)wk)− u∗)‖

≤ βk‖uk − u∗‖+ (1− βk)‖αk(u− u∗) + (1− αk)(wk − u∗)‖

≤ βk‖uk − u∗‖+ (1− βk)(αk‖u− u∗‖+ (1− αk)‖wk − u∗‖)

≤ (1− βk)αk‖u− u∗‖+ (1− (1− βk)αk)‖uk − u∗‖.

(8)

It follows from (8) induction that

‖uk − u∗‖ ≤ max{‖u− u∗‖, ‖u0 − u∗‖}, k ≥ 0.

Therefore {uk} is bounded. It is easy to prove that {ũk}, {vk} and {wk} are all
bounded.

Lemma 3.2 limk→∞ ‖uk+1 − uk‖ = 0.
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Proof. First, we estimate ‖wk+1−wk‖. Noting that PC and I − ρkT is nonexpan-
sive, we have

‖wk+1 − wk‖ = ‖PC [vk+1 − ρk+1T (ũk+1)]− PC [vk − ρkT (ũk)]‖

≤ ‖(vk+1 − ρk+1T (ũk+1))− (vk − ρkT (ũk))‖

= ‖(vk+1 − ρk+1T (vk+1))− (vk − ρk+1T (vk))

+ ρk+1(T (vk+1)− T (ũk+1)− T (vk)) + ρkT (ũk)‖

≤ ‖(vk+1 − ρk+1T (vk+1))− (vk − ρk+1T (vk))‖
+ (ρk+1 + ρk)M1

≤ ‖vk+1 − vk‖+ (ρk+1 + ρk)M1,

(9)

where M1 is some constant such that

sup{‖T (vk+1)− T (ũk+1)− T (vk)‖+ ‖T (ũk)‖, k ≥ 0} ≤ M1.

On the other hand, from vk = Γrk
uk and vk+1 = Γrk+1u

k+1, we have

F (vk, w) +
1
rk
〈w − vk, vk − uk〉 ≥ 0, ∀w ∈ C(10)

and

F (vk+1, w) +
1

rk+1
〈w − vk+1, vk+1 − uk+1〉 ≥ 0, ∀ w ∈ C.(11)

Putting w = vk+1 in (10) and w = vk in (11), we have

F (vk, vk+1) +
1
rk
〈vk+1 − vk, vk − uk〉 ≥ 0,(12)

and

F (vk+1, vk) +
1

rk+1
〈vk − vk+1, vk+1 − uk+1〉 ≥ 0.(13)

From the monotonicity of F , we have

F (vk, vk+1) + F (vk+1, vk) ≤ 0.

So, from (12) and (13), we can conclude that

〈vk+1 − vk,
vk − uk

rk
− vk+1 − uk+1

rk+1
〉 ≥ 0

and hence

〈vk+1 − vk, vk − vk+1 + vk+1 − uk − rk

rk+1
(vk+1 − uk+1)〉 ≥ 0.

Since lim infk→∞ rk > 0, without loss of generality, we may assume that there exists
a real number b such that rk > b > 0 for all k ∈ N . Then, we have

‖vk+1 − vk‖2 ≤ 〈vk+1 − vk, uk+1 − uk + (1− rk

rk+1
)(vk+1 − uk+1)〉

≤ ‖vk+1 − vk‖{‖uk+1 − uk‖+ |1− rk

rk+1
|‖vk+1 − uk+1‖}

and hence

‖vk+1 − vk‖ ≤ ‖uk+1 − uk‖+
M2

b
|rk+1 − rk|,(14)
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where M2 is a constant such that sup{‖vk+1 − uk+1‖, k ≥ 0} ≤ M2. Substituting
(14) into (9), we have

‖wk+1 − wk‖ ≤ ‖uk+1 − uk‖+ (ρk+1 + ρk)M1

+
M2

b
|rk+1 − rk|.

(15)

Define uk+1 = βkuk + (1− βk)xk,∀k ≥ 0. It follows that

xk+1 − xk =
uk+2 − βk+1u

k+1

1− βk+1
− uk+1 − βkuk

1− βk

= S(αk+1u + (1− αk+1)wk+1)− S(αku + (1− αk)wk).
(16)

It follows from (15) and (16) that

‖xk+1 − xk‖ − ‖uk+1 − uk‖

≤ ‖(αk+1u + (1− αk+1)wk+1)− (αku + (1− αk)wk)‖

− ‖uk+1 − uk‖

≤ αk+1(‖u‖+ ‖wk+1‖) + αk(‖u‖+ ‖wk‖)

+ (ρk+1 + ρk)M1 +
M2

b
|rk+1 − rk|,

which implies that lim supk→∞(‖xk+1−xk‖−‖uk+1−uk‖) ≤ 0. This together with
Lemma 2.3 implies that limk→∞ ‖xk − uk‖ = 0. Consequently limk→∞ ‖uk+1 −
uk‖ = limk→∞(1− βk)‖xk − uk‖ = 0.

Lemma 3.3 limk→∞ ‖S(ũk)− ũk‖ = 0.
Proof. Since uk+1 = βkuk + (1− βk)S(αku + (1− αk)wk), we have

‖uk − S(wk)‖ ≤ ‖uk − uk+1‖+ ‖uk+1 − S(wk)‖

≤ ‖uk − uk+1‖+ βk‖uk − S(wk)‖+ (1− βk)αk‖u− wk‖,

that is

‖uk − S(wk)‖ ≤ 1
1− βk

‖uk − uk+1‖+ αk‖u− wk‖.

It follows that

lim
n→∞

‖uk − S(wk)‖ = 0.(17)

Since Γrk
is firmly nonexpansive, we have

‖vk − u∗‖2 = ‖Γrk
uk − Γrk

u∗‖2

≤ 〈Γrk
uk − Γrk

u∗, uk − u∗〉

= 〈vk − u∗, uk − u∗〉

=
1
2
(‖vk − u∗‖2 + ‖uk − u∗‖2 − ‖uk − vk‖2)

and hence

‖vk − u∗‖2 ≤ ‖uk − u∗‖2 − ‖uk − vk‖2.(18)
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By (3), we have

‖uk+1 − u∗‖2 = ‖βk(uk − u∗) + (1− βk)[S(αku + (1− αk)wk)− u∗]‖2

≤ βk‖uk − u∗‖2 + (1− βk)‖αku + (1− αk)wk − u∗‖2

≤ βk‖uk − u∗‖2 + (1− βk)(αk‖u− u∗‖2

+ (1− αk)‖wk − u∗‖2)

= βn‖uk − u∗‖2 + (1− βk)αk‖u− u∗‖2

+ (1− βk)(1− αk)‖wk − u∗‖2.

(19)

From (7) and (19), we have

‖uk+1 − u∗‖2 ≤ βk‖uk − u∗‖2 + (1− βk)αk‖u− u∗‖2

+ (1− βk)(1− αk)‖vk − u∗‖2

+ (1− βk)(1− αk)(
ρ2

k

α2
− 1)‖vk − ũk‖2

≤ βk‖uk − u∗‖2 + (1− βk)αk‖u− u∗‖2

+ (1− βk)(1− αk)‖uk − u∗‖2

+ (1− βk)(1− αk)(
ρ2

k

α2
− 1)‖vk − ũk‖2.

Then we derive

(1− βk)(1− αk)(1− ρ2
k

α2
)‖vk − ũk‖2

≤ βk‖uk − u∗‖2 + (1− βk)αk‖u− u∗‖2

+ (1− βk)(1− αk)‖uk − u∗‖2 − ‖uk+1 − u∗‖2

≤ (1− βk)αk‖u− u∗‖2 + ‖uk − u∗‖2 − ‖uk+1 − u∗‖2

≤ (1− βk)αk‖u− u∗‖2 + (‖uk − u∗‖+ ‖uk+1 − u∗‖)‖uk − uk+1‖.

(20)

It is clear that lim infk→∞(1 − βk)(1 − αk)(1 − ρ2
k

α2 ) > 0. So, from (R1) and (20),
we have

lim
k→∞

‖vk − ũk‖ = 0.(21)

From (18) and (19), we have

‖uk+1 − u∗‖2 ≤ βk‖uk − u∗‖2 + (1− βk)αk‖u− u∗‖2

+ (1− βk)(1− αk)‖vk − u∗‖2

≤ βk‖uk − u∗‖2 + (1− βk)αk‖u− u∗‖2

+ (1− βk)(1− αk)(‖uk − u∗‖2 − ‖uk − vk‖2)

≤ ‖uk − u∗‖2 + (1− βk)αk‖u− u∗‖2

− (1− βk)(1− αk)‖uk − vk‖2,
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that is

(1− βk)(1− αk)‖uk − vk‖2

≤ (1− βk)αk‖u− u∗‖2 + ‖uk − u∗‖2 − ‖uk+1 − u∗‖2

≤ (1− βk)αk‖u− u∗‖2 + (‖uk − u∗‖+ ‖uk+1 − u∗‖)× ‖uk+1 − uk‖,

which implies that

lim
k→∞

‖uk − vk‖ = 0.(22)

Since

‖S(ũk)− ũk‖ ≤ ‖S(ũk)− S(wk)‖+ ‖S(wk)− uk‖+ ‖uk − vk‖+ ‖vk − ũk‖

≤ ‖ũk − wk‖+ ‖S(wk)− uk‖+ ‖uk − vk‖+ ‖vk − ũk‖

= ‖PC [vk − ρkT (vk)]− PC [vk − ρkT (ũk)]‖+ ‖S(wk)− uk‖

+ ‖uk − vk‖+ ‖vk − ũk‖

≤ ρk‖T (vk)− T (ũk)‖+ ‖S(wk)− uk‖

+ ‖uk − vk‖+ ‖vk − ũk‖.

This together with (R3), (17), (21) and (22) implies that limk→∞ ‖S(ũk)− ũk‖ = 0.

Lemma 3.4 lim supk→∞〈u−z0, wk−z0〉 ≤ 0, where z0 = PΩ(u) and Ω = Fix(S)∩
V I(T,C) ∩ EP (F ).
Proof. First, we show that lim supk→∞〈u − z0, S(ũk) − z0〉 ≤ 0. To show this
inequality, we can choose a subsequence {ũkj} of {ũk} such that

lim
j→∞

〈u− z0, S(ũkj )− z0〉 = lim sup
k→∞

〈u− z0, S(ũk)− z0〉.

Since {ũkj} is bounded, there exists a subsequence {ũkji} of {ũkj} which converges
weakly to z. Without loss of generality, we can assume that ũkj → z weakly. From
‖S(ũk)− ũk‖ → 0, we obtain S(ũkj ) → z weakly.

First we show z ∈ EP (F ). By vk = Γrk
uk, we have

F (vk, w) +
1
rk
〈w − vk, vk − uk〉 ≥ 0, ∀w ∈ C.

From the monotonicity of F , we have 1
rk
〈w− vk, vk − uk〉 ≥ −F (vk, w) ≥ F (w, vk)

and hence 〈w − vkj , vkj−ukj

rkj
〉 ≥ F (w, vkj ). Since vkj−ukj

rkj
→ 0 and vkj → z weakly,

from the lower semi-continuity of F (u, v) on the second variable v, we have

F (w, z) ≤ 0,∀w ∈ C.

For t with 0 < t ≤ 1 and w ∈ C, let wt = tw + (1 − t)z. Since w ∈ C and z ∈ C,
we have wt ∈ C and hence F (wt, z) ≤ 0. So, from the convexity of equilibrium
bifunction F (u, v) on the second variable v , we have

0 = F (wt, wt) ≤ tF (wt, w) + (1− t)F (wt, z) ≤ tF (wt, w).

Hence F (wt, w) ≥ 0. Then, we have F (z, w) ≥ 0,∀w ∈ C. This indicates that
z ∈ EP (F ).
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Second, we show that z ∈ V I(T,C). Set

Av =

{
T (v) + NCv, if v ∈ C,

∅, if v /∈ C.

Then A is maximal monotone. Let (v, u) ∈ G(A). Since u − T (v) ∈ NCv and
ũk ∈ C, we have

〈v − ũk, u− T (v)〉 ≥ 0.

On the other hand, from ũk = PC [vk − ρkT (vk)], we have

〈v − ũk, ũk − (vk − ρkT (vk))〉 ≥ 0

and hence

〈v − ũk,
ũk − vk

ρk
+ T (vk)〉 ≥ 0.

It follows that

〈v − ũkj , u〉 ≥ 〈v − ũkj , T (v)〉

− 〈v − ũkj ,
ũkj − vkj

ρkj

+ T (vkj )〉

= 〈v − ũkj , T (v)− ũkj − vkj

ρkj

− T (vkj )〉

= 〈v − ũkj , T (v)− T (ũkj )〉+ 〈v − ũkj , T (ũkj )− T (vkj )〉

− 〈v − ũkj ,
ũkj − vkj

ρkj

〉

≥ 〈v − ũkj , T (ũkj )− T (vkj )〉 − 〈v − ũkj ,
ũkj − vkj

ρkj

〉

which implies that 〈v − z, u〉 ≥ 0. We have z ∈ A−1(0) and hence z ∈ V I(T,C).
Thirdly, we prove that z ∈ Fix(S). Assume that z /∈ Fix(S). Since ũkj ⇀ z

and z 6= S(z), by Opial’s condition we have

lim inf
j→∞

‖ũkj − z‖ < lim inf
j→∞

‖ũkj − S(z)‖

≤ lim inf
j→∞

(‖ũkj − S(ũkj )‖+ ‖S(ũkj )− S(z)‖)

≤ lim inf
j→∞

‖ũkj − z‖,

which is a contradiction. Then we get z ∈ Fix(S). Hence, we deduce that z ∈
Fix(S) ∩ V I(T,C) ∩ EP (F ). Therefore, from the property (iii) of PC , we have

lim sup
k→∞

〈u− z0, wk − z0〉 = lim sup
k→∞

〈u− z0, S(ũk)− z0〉

= lim
j→∞

〈u− z0, S(ũkj )− z0〉

= 〈u− z0, z − z0〉 ≤ 0.

(23)
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4. Strong convergence

Now we prove the strong convergence of Algorithm 3.1.

Theorem 4.1 The sequence {uk} defined by (3) converges strongly to z0 = PΩ(u).
Proof. From (3), we have

‖uk+1 − z0‖2 ≤ βk‖uk − z0‖2 + (1− βk)‖S(αku + (1− αk)wk)− z0‖2

≤ βk‖uk − z0‖2 + (1− βk)‖αk(u− z0) + (1− αk)(wk − z0)‖2

≤ βk‖uk − z0‖2 + (1− βk)[(1− αk)‖wk − z0‖2

+ 2αk〈u− z0, αk(u− z0) + (1− αk)(wk − z0)〉]

≤ βk‖uk − z0‖2 + (1− βk)[(1− αk)‖uk − z0‖2

+ 2αk〈u− z0, αk(u− z0) + (1− αk)(wk − z0)〉]

= [1− (1− βk)αk]‖uk − z0‖2 + 2(1− βk)α2
k‖u− z0‖2

+ 2(1− βk)αk(1− αk)〈u− z0, wk − z0〉

= [1− (1− βk)αk]‖uk − z0‖2 + (1− βk)αk

{
2αk‖u− z0‖2

+ 2(1− αk)〈u− z0, wk − z0〉
}

.

(24)

Note that lim supk→∞

{
2αk‖u − z0‖2 + 2(1 − αk)〈u − z0, wk − z0〉

}
≤ 0. Hence,

by Lemma 2.4 and (24), we conclude that the sequence {uk} converges strongly to
z0. This completes the proof.

It is clear that the following conclusion holds.
Theorem 4.2 Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T be an α-inverse-strongly monotone mapping of C into H and let S be a
nonexpansive mapping of C into itself such that Fix(S) ∩ V I(T,C) 6= ∅. Let {uk}
be the sequence defined by Algorithm 3.2. If the algorithm parameters satisfy con-
ditions (R1)-(R3), then the sequence {uk} converge strongly to PFix(S)∩V I(T,C)(u).
�
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