ALBANIAN JOURNAL OF MATHEMATICS Volume 2, Number 1, Pages 57–60 ISSN 1930-1235: (electronic version)

ON GENERALIZED QUASI-CONVEX FUNCTIONS

KHALIDA INAYAT NOOR

ABSTRACT. In this paper, we introduce and study a class $\tilde{Q}_k(\alpha, \beta, \rho, \gamma)$ of analytic functions in the unit disc. This class generalizes the concept of quasiconvexity. Inclusion results, distortion theorem and some other properties of this class are investigated.

1. INTRODUCTION

Let $\tilde{P}(\gamma)$ denote the class of functions p of the form

(1)
$$p(z) = 1 + c_1 z + c_2 z^2 + \dots,$$

which are analytic in the unit disc $E = \{z : |z| < 1\}$ and which satisfy the condition $|\operatorname{argp}(z)| \leq \frac{\pi\gamma}{2}$ for some $\gamma(\gamma > 0)$ in E. We note that $\tilde{P}(1) \equiv P$ is the class of analytic functions with positive real part. It can easily be shown that the class $\tilde{P}(\gamma)$ is a convex set.

Let $V_k(\rho), k \ge 2, 0 \le \rho < 1$, be the class of functions of analytic and locally univalent in E, f(0) = 0, f'(0) = 1 and satisfying the condition

(2)
$$\int_{0}^{2\pi} \left| \{ Re \frac{(zf'(z))'}{f'(z)} - \rho \} / (1-\rho) \right| d\theta \le k\pi.$$

When $\rho = 0$, we obtain the class V_k , $(k \ge 2)$ of functions of bounded boundary rotation. It can easily be shown that $f \in V_k(\rho)$ if and only if there exists a function $f_1 \in V_k$ such that

(3)
$$f'(z) = (f'_1(z))^{1-\rho}$$

We note that $V_2 \equiv C \subset S^*$, where C and S^* are respectively the classes of convex and starlike univalent functions in E.

We now introduce the following classes of analytic functions.

Definition 1.1. Let $f: f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be analytic in E. Then, for $0 \le \rho < 1$, $0 \le \gamma \le 1$, $f \in T_k^*(\rho, \gamma)$ if and only if there exists a function $g \in V_k(\rho)$ such that, for $z \in E, \frac{f'(z)}{g'(z)} \in \tilde{P}(\gamma)$.

We note that $T_2^{\star}(\rho, \gamma) = \tilde{K}(\rho, \gamma) \subset \tilde{K}(\gamma)$, where $\tilde{K}(\gamma)$ is the class of strongly close-to-convex functions.

Definition 1.2. Let $\alpha, \beta \ge 0$, $(\alpha + \beta \ne 0)$, and let f be analytic in E with f(0) = 0, f'(0) = 1. Then $f \in \tilde{Q}_k(\alpha, \beta, \rho, \gamma)$ for $z \in E$, if and only if there

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C45; Secondary 30C50.

Key words and phrases. Quasi-convex functions, convolution, integral operator.

exists a $g \in V_k(\rho)$ such that

(4)
$$\left\{\frac{\alpha}{\alpha+\beta}\frac{f'(z)}{g'(z)} + \frac{\beta}{\alpha+\beta}\frac{(zf'(z))'}{g'(z)}\right\} \in \tilde{P}(\rho), \quad \text{for some} \quad \gamma > 0.$$

The class $\tilde{Q}_2(\alpha, 0, 0, \gamma)$ consists of strongly close-to-convex functions. Also $\tilde{Q}_2(0, 1, 0, 1) \equiv C^*$ is the class of quasi-convex functions introduced in [1]. Also see [2,3]. For $\beta = (1 - \alpha), \quad g \in V_2(0) \equiv C$, we obtain the class of strongly α -quasi-convex functions discussed in [7]. The case $\rho = \beta = 0, \quad \alpha = \gamma = 1$ gives us the class T_k which was introduced and investigated in [4]. We also refer to [5] for more details.

2. Main Results

Theorem 2.1. Let f be analytic in E with f(0) = f'(0) - 1 = 0. Then $f \in \tilde{Q}_k(\alpha, \beta, \rho, \gamma)$ if and only if

$$\left\{\frac{\alpha}{\alpha+\beta}f(z)+\frac{\beta}{\alpha+\beta}zf'(z)\right\}\in T_k^\star(\rho,\gamma), \quad for \quad z\in E.$$

Proof. The proof follows immediately from the definition of these classes. \Box

Theorem 2.2. For $\beta > 0$, $f \in \tilde{Q}_k(\alpha, \beta, \rho, \gamma)$ if and only if there exists $F \in T_k^*(\rho, \gamma)$ such that

(5)
$$f(z) = \frac{\alpha + \beta}{\beta} z^{\frac{-\alpha}{\beta}} \int_0^z t^{\frac{\alpha}{\beta} - 1} F(t) dt.$$

Proof. From (2.1), we have

$$F(z) = \frac{\alpha}{\alpha + \beta} f(z) + \frac{\beta}{\alpha + \beta} z f'(z),$$

and, using Theorem 2.1, we prove the result.

Theorem 2.3. Let $f \in \tilde{Q}_k(\alpha, \beta, \rho, \gamma)$, $\alpha, \beta > 0$. Then, for |z| = r (0 < r < 1), we have

$$|f(z)| \ge \frac{\alpha + \beta}{2A} \left[\frac{1}{\alpha} - \frac{r^{\frac{-\alpha}{\beta}}}{\beta} G(\left(\frac{\alpha}{\beta}, A, B, -r\right) \right],$$

where

(6)
$$A = \left(\frac{k}{2} - 1\right)(1 - \rho) + \gamma + 1, \quad B = A + \frac{\alpha}{\beta},$$

G denotes the hypergeometric function and it is known to be analytic in E. This result is sharp as can be seen from the function $f_0 \in \tilde{Q}_k(\alpha, \beta, \rho, \gamma), \alpha, \beta > defined$ by

(7)
$$f_0(z) = \frac{(\alpha+\beta)}{\beta(k+2\gamma)} z^{\frac{-\alpha}{\beta}} \int_0^z \xi^{\frac{\alpha}{\beta}-1} \left\{ 1 - \left(\frac{1-\xi}{1+\xi}\right)^{\frac{k}{2}+\gamma} \right\} d\xi.$$

Proof. We consider the straight line Γ joining 0 to $f(z) = Re^{i\phi}$. Γ is the image of a Jordan arc Γ in E connecting 0 to $z = re^{i\theta}$. The image of Γ under the mapping $\left|z^{\frac{\alpha}{\beta}}f(z)\right|$ will consist of many line-segments emanating from the origin each of length

$$r^{\frac{\alpha}{\beta}}R = \left|z^{\frac{\alpha}{\beta}}f(z)\right| = \int_{\Gamma} \left|\frac{d}{d\xi}[\xi^{\frac{\alpha+\beta}{\beta}}f(\xi)]\right| |d\xi|.$$

58

Since f is in $\tilde{Q}_k(\alpha, \beta, \rho, \gamma)$, there exists $F \in T_k^{\star}(\rho, \gamma)$ such that

$$\frac{d}{d\xi} \left[\xi^{\frac{\alpha}{\beta}} f(\xi) \right] = \frac{1}{\beta} f^{\frac{\alpha}{\beta} - 1} F(\xi).$$

Thus, if $t = |\xi|$, we deduce that

(8)
$$r^{\frac{\alpha}{\beta}}R = \frac{\alpha+\beta}{\beta} \int_{\Gamma} \left|\xi^{\frac{\alpha}{\beta}-1}F(\xi)\right| |d\xi|.$$

Now, for $F \in T_k^{\star}(\rho, \gamma)$, we have

(9)
$$|F(z)| \ge \frac{1}{2A} \left[1 - \left(\frac{1-r}{1+r}\right)^A \right],$$

where A is defined by (2.2) and we have used (1.3) together with a result proved in [7]. Using (2.5) in (2.4), we have

$$\begin{split} R &= |f(z)| \geq \frac{r^{\frac{-\alpha}{\beta}}(\alpha+\beta)}{-2\beta A} \int_0^r t^{\frac{\alpha}{\beta}-1} \left[1 - \left(\frac{1-t}{1+t}\right)^A\right] dt \\ &= \frac{(\alpha+\beta)}{2A} \left[\frac{1}{\alpha} - \frac{1}{\beta} r^{\frac{-\alpha}{\beta}} \int_0^r t^{\frac{\alpha}{\beta}-1} (1-t)^A (1+t)^{-A} dt\right] \\ &= \frac{(\alpha+\beta)}{2A} \left[\frac{1}{\alpha} - \frac{r^{\frac{-\alpha}{\beta}}}{\beta} . G(\frac{\alpha}{\beta}, A, B, -r)\right]. \end{split}$$

This completes the proof.

Letting $r \longrightarrow 1$ in Theorem 2.3, we obtain the following result.

Theorem 2.4. Let $f \in \tilde{Q}_k(\alpha, \beta, \rho, \gamma)$, $(\alpha, \beta > 0)$. Then f(E) contains the schliht disc

$$|z| < \frac{\alpha + \beta}{(k-2)(1-\rho) + 2\gamma + 2}.$$

We now have the following.

Theorem 2.5. A function $f \in \tilde{Q}_k(\alpha, \beta, 0, \gamma)$ for $\alpha, \gamma >, \beta \ge 0$ belongs to $T_2^*(0, \gamma)$ for $z \in E$.

Proof. For $\beta = 0$, $\tilde{Q}_2(\alpha, 0, 0, \gamma) = T_2^{\star}(0, \gamma)$ and the result is obvious. We shall assume that $\beta > 0$.

Form (2.1), we note that, for $f \in \tilde{Q}_2(\alpha, 0, 0, \gamma)$,

$$f(z) = \phi_{\alpha,\beta}(z) \star F(z),$$

where $F \in T_2^{\star}(0, \gamma)$ and

$$\phi_{\alpha,\beta}(z) = \sum_{n=1}^{\infty} \left[\frac{(\alpha+\beta)}{\beta(n-1) + \alpha + \beta} \right] z^n.$$

Since $\phi_{\alpha,\beta}(z)$ is convex in E, see [8] and it is known that the class $T_2^*(0,\gamma)$ is closed under convolution with convex functions [6], we conclude that $f \in T_2^*(0\gamma)$. \Box

Using Theorem 2.1 and Theorem 2.5, we can easily show that the class $\hat{Q}_2(\alpha, \beta, 0, \gamma)$ is also closed under convolution with convex functions.

Theorem 2.6. Let

$$\frac{\alpha_1}{\alpha_1 + \beta_1} < \frac{\alpha}{\alpha + \beta}, \quad \frac{\beta_1}{\alpha_1 + \beta_1} < \frac{\beta}{\alpha_1 + \beta_1}.$$

Then, for $z \in E$, $\tilde{Q}_2(\alpha, \beta, 0, \gamma) \subset \tilde{Q}_2(\alpha_1, \beta_1, 0, \gamma)$. *Proof.* Let $f \in \tilde{Q}_2(\alpha, \beta, 0, \gamma)$. Then, for $z \in E$,

$$\frac{\alpha_1}{\alpha_1 + \beta_1} \frac{f'(z)}{g'(z)} + \frac{\beta_1}{\alpha_1 + \beta_1} \frac{(zf'(z))'}{g'(z)} = \left(1 - \frac{\beta_1(\alpha + \beta)}{\beta(\alpha_1 + \beta_1)}\right) \frac{f'(z)}{g'(z)}$$
$$+ \frac{\beta_1(\alpha + \beta)}{\beta(\alpha_1 + \beta_1)} \left[\frac{\alpha}{\alpha + \beta} \frac{f'(z)}{g'(z)} + \frac{\beta}{\alpha + \beta} \frac{(zf'(z))'}{g'(z)}\right]$$
$$= 1 - \frac{\beta_1(\alpha + \beta)}{\beta(\alpha_1 + \beta_1)} H_1(z) + \frac{\beta_1(\alpha + \beta)}{\beta(\alpha_1 + \beta_1)} H_2(z) = H(z)$$

and since $\tilde{P}(\gamma)$ is a convex set, it follows that $H \in \tilde{P}(\gamma), z \in E$. This implies that $f \in \tilde{Q}_2(\alpha, \beta, 0, \gamma)$.

Acknowledgement. We would like to thank Dr. S. M. Junaid Zaidi, Rector, CIIT, for providing excellent research facilities.

References

- K. Inayat Noor, On Close-to-Convex and Related Functions, PhD Thesis, University of Wales, Swansea, UK, 1972.
- [2] K. Inayat Noor and D. K. Thomas, Quasi-convex univalent functions, Inter. J. Math. Math. Sci., 3(1980), 755-758.
- [3] K. Inayat Noor, On quasi-convex functions and related topics, Inter. J. Math. Math. Sci., 10(1987), 241-258.
- K. Inayat Noor, On a generalization of close-to-convexity, Inter. J. Math. Math. Sci., 6(1983), 327-334.
- [5] K. Inayat Noor, Higher order close-to-convex functions, Math. Japonica, 37(1992), 1-8.
- [6] K. Inayat Noor, On strongly close-to-convex functions, Mathematics (Cluj), 44(67)(2002), 25-29.
- [7] K. Inayat Noor, On a class related with strongly close-to-convex functions, *Mathematica* (Cluj), 44(67)(2002), 191-199.
- [8] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

MATHEMATICS DEPARTMENT,, COMSATS INSTITUTE OF INFORMATION TECHNOLOGY,, ISLAM-ABAD, PAKISTAN

 $E\text{-}mail\ address:\ \texttt{khalidanoor@hotmail.com}$

60