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INVERSE LIMITS OF H-CLOSED SPACES

IVAN LONCAR

ABSTRACT. The main purpose of this paper is to study the non-emptiness and
H-closeness of inverse limits of H-closed spaces.

1. INTRODUCTION

An inverse system X = { X, pab, A} [4, p. 135] over a directed set A is a function
which attaches to each a € A a space X, and to each pair a,b € A such that a <b
a mapping pgp : Xp — X, such that

Paa = identity, a € A,
PabPbe = Pac a<b<e
The inverse limit lim X of the inverse system X = {X,,pap, A} is the set of all
points {z,} of the Cartesian product II{X, : a € A} satisfying pap(zp) = x, for
every a < b.
For each inverse system X = {X,, pqp, A} we define [4, Proposition 2.5.1, p.135]

Xav ={{za} eI{X, : a € A} : pap(ap) = 24, a < b}.
Proposition 1. [4, Proposition 2.5.1, p.135]. The limit of an inverse system X =
{Xa,pabs A} of a Hausdorff spaces X, is closed subset of the Cartesian product
I{X,:ac A}.
For each inverse system X = {X,, pap, A} we define [4, Theorem 3.2.13, p.188]
Zo={{zs} €eT{X, :a € A} : ppo(x4) = xp, b<a}

In [4, Theorem 3.2.13, p.188] it is used that Z, is closed in II{X, : a € A}. This
is true if each X, is Hausdorff.

Proposition 2. The family {Z, : a € A} has the finite intersection property.

Proof. This follows from the fact that for each pair a,b there is a ¢ € A such that
Z. C Zo N Zy [4, The proof of Theorem 3.2.13, p. 188]. O

Let (X, 7) be an arbitrary topological space. According to [17], a point z € X is
said to be a 0-cluster point of a set A C X if and only if Cl VN A # () whenever V
is an open neighbourhood of z. Let |A|p denote the set of all #-cluster points of A;
A is said to be - closed if and only if [A]p = A. The above concepts are generally
used in the literature (see e.g. [14] and [2]).
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Proposition 3. [3, (2.3)]. A space X is Hausdorff if and only if for each p € X,
[{p}o = {p}-

Proposition 4. [3, (2.4)]. A space is regular if and only if for every A C X,
|Alg = Cl A.

In the sequel the following theorem frequently will be used.

Theorem 1.1. [6, Theorem 2|. In any topological space:

(a): the empty set and the whole space are 6-closed,

(b): arbitrary intersection and finite unions of 8-closed sets are 0-closed,
(c): ClK C |K]|, for each subset K,

(d): a 0-closed subset is closed.

A subset A C X is said to be G-open if X\ A is O-closed.A subset A C X is said
to be regular- open provided Int ( Cl (A)) = A.

A Hausdorff space X is H-closed [1] if it is closed in any Hausdorff space in which
it is embedded.

The following two characterizations are given in [1].

Proposition 5. [1, Theorem 1]. A Hausdorff space X is H-closed if and only if
every family {U, : U, is open in X, p € Q} with the finite intersection property
has the property N{ CLU, : p € Q} # 0.

Proposition 6. [1, Theorem 2]. A Hausdorff space X is H-closed if for each open
cover {U, : p € M} of X there exists a finite subfamily {U,,,...,U,,} such that
{ClU,,,.., ClU,} is a cover of X.

Proposition 7. [6]. A Hausdorff space X is H-closed if and only if for every
family {A, : A, C X, p € Q } with the finite intersection property there exists a
point x € X such that ClV N A # 0 for every open set V containing x and every
A

-
The point z is called 6-accumulation point. From this characterizations it follows
the following lemma frequently used in the paper.

Lemma 1.2. If X is H-closed, then every family {A,, p € Q } of 0-closed subsets
of X with the finite intersection property has a non-empty intersection N{A,, p € Q
1.

Proof. Let X be H-closed and let {A,,, u € Q } be a family of #-closed subsets of X
with the finite intersection property. By Proposition 7 we infer that there exists a
f-accumulation point  such that Cl1 V N A # ) for every open set V' containing x
and every A,,. This means that x € N{A,, :, p € Q } since each A, is f-closed. O

Theorem 1.3. [2, (2.4), p.410]. Disjoint 8-closed subsets of an H-closed space are
contained in disjoint open subsets.

Lemma 1.4. If f: X — Y is a continuous mapping, then f~1(F) is 0-closed in
X if F is 0-closed in Y.

Proof. If ¥ € X\ f~1(F), then f(x) ¢ F. There exists an open set U such that
f(x) € U and ClUNF = () since F is f-closed in Y. The open set f~1(U)
contains z and Cl f~1(U)N f~1(F) = 0 since f~*( CLU)N f~1(F) = (. Hence, if
x € X\ JSUF), then x € X\ |f’1(F)|97 and, consequently, f~1(F) is #-closed in
X. g
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A net {z, : p € M} is eventually in a set A if and only if there exists a p € M
such that z, € A for each v > p [12, p. 65].

A net {z, : p€ M} is frequently in a set A if and only if for each p € M there
is a v > p such that z, € A.

A net in a topological space is said to 0-converge (6-accumulate) [6, Definition
3] to a point z in the space if then net is eventually (frequently) in Cl (V') for each
open set V about .

The following two theorems are proved in [17, Lemmas 1, 2, 3]. See also [9].

Theorem 1.5. A point x in a topological space is in O-closure of a subset K if and

only if there is a net x, in K which 8-converges to x (ma Tx),

Theorem 1.6. A Hausdorff space is H-closed if and only if each nmet in the space
has a 0-convergent subnet.

In the sequel the following Proposition will be frequently used.

Proposition 8. [3, (2.7), p. 45]. A 6-closed subset of an H-closed space is H-closed.

2. INVERSE LIMIT OF H-CLOSED SPACES AND MAPPINGS WITH #-CLOSED GRAPHS

In this Section we consider inverse limit of inverse systems X = {X,, pas, A} of
H-closed spaces X, and bonding mappings p,, with 6-closed graphs. Such bonding
mappings pep are special case of multifunction considered in [11].

Let f: X — Y be a mapping. The graph G(f) of f is

G(f) ={(z,y) e X xY :y = f(x)}.
Theorem 2.1. [11, Theorem 2.3]. The following statements are equivalent for spaces
X, Y, and multifunction ® : X — Y:
(a): The multifunction ® has a 0-closed graph G(®),
(b): For each (z,y) € (X XY) — G(®) there are sets V3 x in X and W Dy
in' Y with ®( CL(V))n ClL (W) = 0.

Now we shall prove the following result concerning inverse limit of inverse systems
X = {X4,Pap, A} of H-closed spaces X, and bonding mappings p., with 6-closed
graph.

Theorem 2.2. Let X = {X,, pap, A} be an inverse system of non-empty H-closed
spaces X, and bonding mappings pay with 0-closed graphs. Then X = limX is
non-empty, 0-closed in II{X, : a € A} and H-closed.

Proof. Tt is known that II{X, : a € A} is H-closed [4, Problem 3.12.5 (d), p.
283]. Let us prove that Z, = {(zp) € 11X, : pap(zs) = @p} is -closed for each
a € A. To do this we shall prove that TI{X, : a € A}\Z, is 0 -open. Let
Yy = (ya) € I{X, : a € APN\Z,. There exists b < a such that p.p(z,) # Tp.
It follows from Theorem 2.1 that there exists a pair U,V of open sets such that
xq €U, xzp € V and ppe( CLU) N ClV = () since py, has a f-closed graph.

Now Z =U x V x II{X. : ¢ # a,b} is open set containing y with the property
ClZ c II{X, :a € A\Z, . This means that I[I{X, : a € A}\ Z, 6-open, and,
consequently, Z, is #-closed. In order to prove that X = limX is non-empty
consider the family {Z, : a € A} of 6-closed sets Z,. This family has the finite
intersection property (Proposition 2). By Lemma 1.2 we infer that N{Z, : a € A}
= lim X is non-empty. Now, (b) of Theorem 1.1 implies that lim X is #-closed.
Finally, from Proposition 8 it follows that lim X is H-closed. (]
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3. INVERSE LIMIT OF H-CLOSED SPACES AND STRONGLY CONTINUOUS BONDING
MAPPINGS

A mapping f : X — Y issaid to be strongly continuous at x € X [15] provided for
each neighborhood U of f(z) there is a neighborhood V of 2 such that f( C1 V) C
U. A mapping f: X — Y is said to be strongly continuous provided f is strongly
continuous at each point = € X.

If Y is a regular space, then each continuous mapping f : X — Y is strongly
continuous.

Proposition 9. Let Y be a Hausdorff space. Every strongly continuous mapping
f:X =Y has a 0-closed graph.

Proof. Let x € X and y € Y such that y # f(x). There are open disjoint sets U, V/
in Y such that y € U and f(z) € V. It is clear that ClLU NV = (). Moreover,
there is an open set W containing = such that p,,( Cl W) C V since f is strongly
continuous. Now, for (z,y) € (X xY)—G{f) there are sets W >z in X and U 3 y
in Y with f( C1 (W))N Cl (U) = 0. By Theorem 2.1 the proof is completed. O

Theorem 2.2 and Proposition 9 imply the following result.

Theorem 3.1. Let X = {X,,pap, A} be an inverse system of non-empty H-closed
spaces X, and strongly continuous bonding mappings. Then X = lim X is non-
empty. Moreover, X =lim X is 0-closed in II{ X, : a € A} and H-closed.

4. INVERSE LIMIT OF H-CLOSED SPACES AND 6-CLOSED BONDING MAPPINGS

In this section we study the inverse systems X = {X,, pap, A} with H-closed
spaces X, and #-closed bonding mappings pgp-

A mapping f: X — Y is said to be 6-closed if f(F) is f-closed for each -closed
subset F' C X.

Remark 4.1. In [16, Definition 4.1, p. 490] is given the following definition. A
function f is said to be 0-open if the image of every open set is 6-open. Similarly,
a function f is said to be 0 -closed if the image of every closed set is 0-closed.

Lemma 4.2. Let f: X — Y be a continuous mapping. The following conditions
are equivalent:

(a): f is O-closed,
(b): for every B C'Y and each 0-open set U O f~1(B) there exists a 0-open
set V.2 B such that f~1(V) C U.

Proof. The proof is similar to the proof of the corresponding theorem for closed
mappings [4, p. 52]. O

Now we are ready to prove the following theorem.

Theorem 4.3. Let X = {X,, pap, A} be an inverse system of non-empty H-closed
spaces X, and 0-closed bonding mappings pep. Then X =1lim X is non-empty and

Pa(X) = {pap(Xp) : b > a}

where pg 1 X — Xg,a € A, is a natural projection.
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Proof. Let 6, be a family of all non-empty 6-closed subsets of X, and let ) be a
family of all collections Y = {Y, : Y, € 0,,a € A} such that p,,(Y;) C Y,. The
family ) is non-empty since X € ). For two collections Y = {Y, : Y, € 0,,a € A}
and Z ={Z, : Z, € 04,a € A} we shall write Y > Z if Y, C Z, for every a € A.
It is clear that (Y, >) is a partially ordered set. The remaining part of the proof
consists of several steps.

Step 1. There exists a maximal element in (Y,>). It suffices to prove that
(¥, >) is inductive, i.e., if L = {Y* : X € A} is a strictly increasing chain in (), >),
then there is an element M € (), >) such that M > Y for every A € A. We define
M ={M, : M, € 0,,a € A} such that M, = N{Y} : A € A}. From Lemma 1.2
and Theorem 1.1 it follows that the set M, is non-empty 6-closed subset of X,.
Moreover, pap(My) C M,.

Step 2. If Y ={Y, :Y, € 0,,a € A} is a mazimal element of (Y,>), then
Yo = pab(Ys) for every pair a,b € A such that a <b.Let Z ={Z,: Z, € 0,,a € A}
be a collection such that Z, = N{pas(Ys) : b > a}. Each pup(Ys) is 6-closed since
Pab 18 B-closed and Y, € 6,. By Lemma 1.2 and Theorem 1.1 it follows that the
set Z, is non-empty 6-closed subset of X,. In order to prove that Z € (), >) it
suffices to prove that p.,(Mp) C M,. If a < b then pep(Zp) C N pab(Poc(Ye)) 1 b <
¢} = M{pac(Ye) : ¢ > b}. On the other hand, for every d > a there is a ¢ € A such
that ¢ > b,d. Tt follows that p,.(Y.) C pad(Yq). This means that

M Pac(Ye) : ¢ > b} = {paa(Yy) : ¢ > b} = Z,.

Finally, we have Z € (), >). Moreover, Z, C Y, for each a € A. This means that
Z =Y since Y is maximal.

Step 3. If Y ={Y, : Y, €0,,a € A} is a mazimal element of (¥, >), then Y,
is one-point set for every a € A. Let z, € Y,. Define

g =L Vg () if b>a,
b Y, if ba.

Let us prove that Z = {Z, : Z, € 0,,a € A}. From Proposition 3 and Lemma
1.4 it follows that p;bl (x4) is B-closed. Then, by Theorem 1.1, we infer that each
Ys, ﬂp;bl (z4) is O-closed. Tt is easy to prove that puy(Zp) C Z,. Hence, Z € (¥,>
). Now, Z =Y since Z > Y and Y is maximal. This means Y, = {z,}.

Step 4. lim X is non-empty. From Step 3 we have Z ={Z, : Z, € 0,,a € A} =
{zq : a € A} such that pyy(xp) = z, for every pair a,b such that b > a.

Step 5. Let us prove pa(X) = N{pap(Xp) : b > a}. It is clear that p,(X) C
{pas(Xp) : b > a}. Let us prove that p,(X) D N{pas(Xp) : b > a}. Let z, €
N {pap(Xp) : b > a}. This means that Y, = p_,!(z,) is non-empty for each b > a.
Moreover, Y} is 6-closed (Proposition 3 and Lemma 1.4). For each b non-comparable
with a, let Y, = X;. Now, we have a collection Y = {Y, : Y, € 6,,a € A} which
is evidently in (), >). There exists a maximal element Z = {Z, : Z, € 0,,a € A}
in (), >) such that Z > Y. It follows that each Y, is some Z, which is a point
za € Xq (Step 3) since Z is maximal. The collections (z,) is a point of lim X.
Hence, pa(X) = {pas(X0) : b > a}. O

QUESTION 1. Is it true that X =1lim X in Theorem 4.3 is H-closed?
QUESTION 2. Is every projection p, : lim X — X, 6-closed?
At the end of this section we consider the special kinds of 8-closed mappings.
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A mapping f : X — Y has the inverse property provided f='(ClV) =
Cl f=Y(V) for every open set V C Y.

Lemma 4.4. If f: X — Y is a closed mapping with the inverse property and if X
and Y are H-closed, then f is 0-closed.

Proof. Let F be a 6-closed subset of X. In order to prove that f(F') is 6-closed we
shall prove that Y\ f(F) is f-open. Let y € Y\ f(F). Now, f~1(y) is 6-closed
subset of X (Lemma 1.4). Using Theorem 1.3 we obtain disjoint open sets U and
V' such that F C U and f~!(y) C V. It follows that Cl V NU = . The closeness
of f imply the existence of an open set W about y such that f~1(W) c V. We
infer that Cl f~1(W) c Cl V. Moreover, f~1( C1W) C ClV. It follows that
T CIW)NF =0, ie, CLWN f(F)=0. Hence, if y € Y\ f(F), then y has a
neighborhood W such that C1 W C Y\ f(F), i.e., Y\ f(F) is f-open and f(F) is
-closed. O

Each open mapping has the inverse property [4, Exercise 1.4.C., p. 57] . Hence,
we have the following corollary.

Corollary 4.5. If f : X — Y is a closed and open mapping and if X and Y are
H-closed, then f is 0-closed.

Lemma 4.6. If X and Y are H-closed, then each strongly continuous mapping
f: X =Y is0-closed.

Proof. Let us recall that f : X — Y is said to be strongly continuous at x € X [15]
provided for each neighborhood U of f(z) there is a neighborhood V' of x such that
f(ClV)CU. A mapping f: X — Y is said to be strongly continuous provided f
is strongly continuous at each point x € X. Now, let us prove Lemma.

Let F be a 6-closed subset of X. We have to prove that f(F) is a 6-closed
subset of Y. Suppose that it is not -closed. There is a point y € | f(F)|o\f(F).
By Theorem 1.5 we infer that there is a net {y, : yo € f(F),a € A} which 6-
converges to y. Now there is a net {z, : z, € F, f(z4) = ya}. By Theorem 1.6 we
may assume that this net is #-convergent to some point z € X. From Theorem
1.5 it follows that « € F since F' is f-closed. It is clear that f(x) is #-limit of
{f(xa) : x4 € F} = {Ya : Ya € f(F),a € A}. We infer that f(z) = y since, in the
opposite case, f(z) and y have disjoint neighborhoods U and V such that f(z) € U
and there is a neighborhood W such that f( C1 W) C U. This means that a net
{Ya : Yo € f(F),a € A} is not eventually in Cl V. This is impossible. Hence,
f(z) = y From z € F it follows that f(z) € f(F'). Hence y € f(F) and f(F) is
f-closed. The proof is completed. O

Lemma 4.7. If Y is Urysohn and X H-closed, then each continuous mapping
f: X =Y is0-closed.

Proof. Let F be a #-closed subset of X. We have to prove that f(F) is a 6-closed
subset of Y. Suppose that it is not -closed. There is a point y € |f(F)|o\f(F). By
Theorem 1.5 we infer that there is a net {y, : yo € f(F),a € A} which 6-converges
to y. Now there is a net {z, : x4 € F, f(24) = yo}. By Theorem 1.6 we may assume
that this net is f-convergent to some point x € X. From Theorem 1.5 it follows
that € F since F is f-closed. It is clear that f(z) is 6-limit of {f(z,) : x4, € F}
={Ya : Ya € f(F),a € A}. We infer that f(z) = y since in Urysohn space a net
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has only one #-limit. From z € F it follows that f(z) € f(F). Hence y € f(F') and
f(F) is 6-closed. The proof is completed |

A function f : X — Y is almost closed [2] if for any set A C X we have
F(Alo) = [£(A)lo-

Now we shall prove the following theorem.
Theorem 4.8. Fach almost closed function is 6-closed.

Proof. If A is O-closed, then A = |Als. Now we have f(|Alp) = |f(A)|g or f(A) =
|f(A)|g. This means that f(A) is 6-closed. Hence f is #-closed. O

Corollary 4.9. Let X = {X,,pap, A} be an inverse system of non-empty H-closed
spaces X, and closed bonding mappings pqy with the inverse property. Then X =
lim X is non-empty and H-closed.

Proof. Lemma 4.4 and Theorem 4.3 imply the Corollary. H-closenes of lim X it
follows from Theorems 3.3 and 3.7 of [5]. O

5. INVERSE SYSTEMS OF NEARLY-COMPACT SPACES

We say that a space X is an Urysohn space ([7], [10]) if for every pair z,y, xz # y,
of points of X there exist open sets V and W about z and y such that Cl V N
ClWw = 0.

A Hausdorff space is nearly-compact [8] if every open cover if every open cover
{U, : p € M} has a finite subcollection {U,,,...,U,, } such that Int ClU,, U...U
Int ClU,, = X. Every nearly-compact space is H-closed.

Lemma 5.1. [8]. A space X is nearly-compact if and only if it is H-closed and
Urysohn.

If X = {Xa4,pap, A} is an inverse system of nearly-compact spaces, then 6-
closeness of bonding mappings p,, in Theorem 4.3 follows from Lemma 4.7, but
we shall give the alternate proof of the following theorem.

Theorem 5.2. Let X = {X,,pap, A} be an inverse system of non-empty nearly-
compact spaces X,. Then X =1lim X is non-empty, 0-closed in TI{X, : a € A} and
nearly-compact.

Proof. Let us observe that II{X, : a € A} is H-closed [4, Problem 3.12.5 (d), p.
283]. Let us prove that Y, = {(xp) € II1X, : pap(x4) = 2} O-closed for each a € A.
To do this we shall prove that I1X,\Y, 6-open. Let y = (y,) € IIX,\Y,. There
exists b < a such that pap(z,) # xp. It follows that there exists a pair U,V of open
sets such that z, € U, pap(z,) € V and C1UN ClV = @ since X} is Urysohn.
Moreover, there is an open set W containing x, such that p.,( CL W) c Cl V.
Now Z = U x W x II{ X, : ¢ # a,b} is open set containing y with the property
Cl Z Cc IX \Y,. This means that To IIX,\Y, 6-open, and, consequently, Y,
is f-closed. In order to prove that X = lim X is non-empty consider the family
{Y, : a € A} of O-closed sets Y,. This family has the finite intersection property
(Proposition 2). By Lemma 1.2 we infer that N{Y, : a € A} = lim X is non-empty.
It is #-closed by Theorem 1.1 and H-closed by Proposition 8. Moreover, lim X is
Urysohn and, consequently, nearly-compact. (I
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6. INVERSE SYSTEMS WITH SEMI-OPEN BONDING MAPPINGS

A mapping f: X — Y is said to be semi-open provided Int f(U) # ) for each
non-empty open U C X.

Theorem 6.1. Let X = {X,, pap, A} be an inverse system of non-empty H-closed
spaces X, and semi-open bonding mappings. Then X = lim X is non-empty and
H-closed.

Proof. The proof is broken into several steps.

Step 1. By virtue of [13, Theorem 2, p. 10] we can assume that A is cofinite,
i.e., for each a € A the set of all predecessors of a is finite set.

Step 2. The sets

Zo = {{z.} € X, : pap(xp) = 24, a < b}

have non-empty interior. Let a1, ...,ar be a set of all predecessors of a. If U C X,
is open set, then Int po,o(U) X ... X Int pa,o(U) x U x I{X}, : b ¢ {aq,...,ax,a}}
is an open set contained in Z,. Hence, Int Z, is non-empty for each a € A.

Step 3. The family { Int Z, : a € A} has the finite intersection property. This
follows from the fact that for each pair a,b thereis a ¢ € A such that Z. C Z,NZ,
and, consequently, Int Z. C Int Z, N Int Z,.

Step 4. N{ Cl Int Z, : a € A} is non-empty. This follows from Proposition 5.

Step 5. Now limX =nN{Z, :a € A} DN{Cl Int Z, : a € A}. This means
that lim X is non-empty and the proof of non-emptiness is completed.

Step 6. X =1lim X is H-closed. Let U = {U,, : p € M} be a maximal family of
open sets of X with the finite intersection property. From the definition of topology
on X it follows that there is an a(u) € A such that Int f,(,)(U,) is non-empty.
By virtue of the semi-openness of pq, we infer that Int f,(U,) # 0 for every a € A
and every p € M. This means that a family { Int f,(U,) : p € M} is a family with
the finite intersection property. Let us prove that this family is maximal. If U is
an open set which intersects every set Int f,(U,),n € M, then p;'(U) € U since
pa 1(U) intersects every U,,. This means that U € { Int f,(U,) : p € M}. Hence,
{Int fo(U,) : p € M} is maximal. From the H-closeness of X, and Proposition
5 it follows that there is a point z, = N{ Cl Int f,(U,) : p € M}. It is obvious
that pay(xp) = x4 for every b > a.Now, z = (2, : a € A) is a point of lim X and
z e nN{ClU,) : p € M}. By Proposition 5 limX is H-closed and the proof is
completed. (I

We close this Section with some corollaries of Theorem 6.1.

Corollary 6.2. Let X = {Xg,pap, A} be an inverse system of non-empty H-closed
spaces X, and open bonding mappings. Then X = limX is non-empty and H-
closed.

Remark 6.3. For another proof of this corollary see [18].

A mapping f : X — Y is an drreducible mapping if the set f#(U) = {y € YV :
f~1(y) C U} is non-empty for every non-empty open se U C X. If f : X — Y
is a closed and irreducible mapping, then f#(U) is open and non-empty. Hence, a
closed and irreducible mapping is semi-open. Theorem 6.1 now gives the following
corollary.
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Corollary 6.4. Let X = {X,,pap, A} be an inverse system of non-empty H-closed
spaces X, and closed irreducible bonding mappings. Then X = lim X is non-empty
and H-closed.
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