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Abstract. In this paper, we introduce and consider a new class of Wiener-

Hopf equations involving the nonlinear operator and nonexpansive operators,
which is called the implicit Wiener-Hopf equations. Essentially using the pro-

jection technique, we establish the equivalence between the implicit Wiener-

Hopf equations and quasi variational inequalities. Using this alternative equiv-
alent formulation, we suggest and analyze an iterative method for finding the

common element of the set of fixed points of nonexpansive mappings and the

set of solutions of the quasi variational inequalities. We also study the conver-
gence criteria of iterative methods under some mild conditions. Our results

include the previous results as special cases and may be considered as an im-
provement and refinement of the previously known results.

1. Introduction

Quasi variational inequalities are being used as a mathematical programming
tool in modelling various equilibrium problems in economics, operations research,
optimization, regional, ecology and network analysis, see [1-33]. It is well known
that the quasi variational inequalities include variational inequalities, implicit com-
plementarity problems and optimization problems as special cases. It combines
novel theoretical and algorithmic advances with new domain of applications. Anal-
ysis of these problems requires a blend of techniques from convex analysis, func-
tional analysis and numerical analysis. As a result of such interaction between
different branches of mathematical and engineering sciences, we now have a variety
of techniques to suggest and analyze various numerical methods including projec-
tion technique and its variant forms, auxiliary principle and Wiener-Hopf equations
for solving variational inequalities and related optimization problems. Essentially
using the projection technique, one can establish the equivalence between the vari-
ational inequalities and the Wiener-Hopf equations. This equivalence has played an
important and significant role in studying various problems associated with vari-
ational inequalities. Related to the quasi variational inequalities and the implicit
Wiener-Hopf equations, we have the problem of finding the fixed points of the non-
expansive mappings, which is the subject of current interest in functional analysis.
It is natural to consider a unified approach to these different problems.
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Motivated and inspired by the research going on in this direction, we first intro-
duce a new class of the Wiener-Hopf equations involving a nonexpansive operator
S, which is called the implicit Wiener-Hopf equations. Using the projection tech-
nique, we show that the implicit Wiener-Hopf equations are equivalent to the quasi
variational inequalities. We use this alternative equivalence to suggest and analyze
an iterative scheme for finding the common solutions of the variational inequali-
ties and nonexpansive mappings using the Wiener-Hopf equation technique. We
also prove the convergence criteria of these new iterative schemes under some mild
conditions. Since the quasi variational inequalities include variational inequalities
and the implicit(quasi) complementarity problems as special cases, results proved
in this paper continue to hold for these problems. In this respect, results proved in
this paper may be viewed as significant and improvement of the previously known
results.

2. Formulations and Basic Facts

Let H be a real Hilbert space, whose inner product and norm are denoted by
〈·, ·〉 and ‖ · ‖, respectively. Let K(u) be a closed and convex-valued set in H and
T : H −→ H be a nonlinear operator.

A quasi variational inequality consists in finding u ∈ K(u), such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K(u).(1)

It is well known [1- 28] that a large class of obstacle, unilateral, contact, free,
moving, and equilibrium problems arising in economics, finance, physics, mathe-
matics, engineering and applied sciences can be studied in the unifying and general
framework of (1).

To convey an idea of the applications of the quasi variational inequalities, we
consider the second-order implicit obstacle boundary value problem of finding u
such that

(2)

−u′′ ≥ f(x) on Ω = [a, b]
u ≥M(u) on Ω = [a, b]
[−u′′ − f(x)][u−M(u)] = 0 on Ω = [a, b]
u(a) = 0, u(b) = 0.


where f(x) is a continuous function and M(u) is the cost (obstacle) function. The
prototype encountered [2] is

M(u) = k + inf
i
{ui}.(3)

In (3), k represents the switching cost. It is positive when the unit is turned on
and equal to zero when the unit is turned off. Note that the operator M provides
the coupling between the unknowns u = (u1, u2, . . . , ui). We study the problem (2)
in the framework of the quasi variational inequality approach. To do so, we first
define the set K(u) as

K(u) = {v : v ∈ H1
0 (Ω) : v ≥M(u), on Ω},(4)

which is a closed convex-valued set in H1
0 (Ω), where H1

0 (Ω) is a Sobolev (Hilbert)
space. One can easily show that the energy functional associated with the problem
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(2) is

I[v] = −
∫ b

a

(
d2v

dx2

)
vdx− 2

∫ b

a

f(x) (v) dx, ∀v ∈ K(u)

=
∫ b

a

(
dv

dx

)2

dx− 2
∫ b

a

f(x) (v) dx

= 〈Tv, v〉 − 2〈f, v〉(5)

where

〈Tu, v〉 =
∫ b

a

(
d2u

dx2

)
(v) dx =

∫ b

a

du

dx

dv

dx
dx(6)

〈f, v〉 =
∫ b

a

f(x)(v)dx.

It is clear that the operator T defined by (6) is linear, symmetric and positive. Using
the technique of Noor [13,14,20], one can show that the minimum of the functional
I[v] defined by (5) associated with the problem (2) on the closed convex-valued set
K(u) can be characterized by the inequality of type (1). See also [1-29] for the
formulation, applications, numerical methods and sensitivity analysis of the quasi
variational inequalities.

If K?(u) is the dual (polar) cone of the convex-valued cone K(u), then the quasi
variational inequalities (2.1) are equivalent to finding u such that

u ∈ K(u), Tu ∈ K?(u), and 〈u, Tu〉 = 0,(7)

which are called the quasi (implicit) complementarity problems. It is well known
that a wide class of problems arising in various branches of pure and applied sciences
can be studied via the implicit complementarity problems (7). For the applications,
numerical methods and physical formulation, see the references.

If the convex-valued set K(u) is independent of the solution u, that is, K(u) = K,
a closed convex set, then problem (1) is equivalent to finding u ∈ K, such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K,(8)

which is known as the classic variational inequality introduced and studied by
Stampacchia [32] in 1964. For the state of the art in this theory; see [1- 33].

We also need the following well-known concepts and results.

Lemma 2.1. Let K(u) be a closed convex-valued set in H. Then, for a given
z ∈ H, u ∈ K(u) satisfies the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ K(u),

if and only if

u = PK(u)z,

where PK(u) is the projection of H onto the closed convex-valued set K(u).
It is worth mentioning that the implicit projection operator PK(u) is not an

nonexpansive operator. This fact motivates us to consider the following assumption
on the projection operator PK(u) as:
Assumption 2.1. The projection operator PK(u) satisfies the following relation.

‖PK(u)w − PK(v)w‖ ≤ ν‖u− v‖, ∀v, u, w ∈ H,
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where ν > 0 is a constant.
We remark that Assumption 2.1 is true for the special case,

K(u) = m(u) +K,(9)

which appears in many important applications [2], where m is a point-to-point
mapping and K is a closed convex set in H. It is well known that

PK(u)w = Pm(u)+Kw = m(u) + PK [w −m(u)], ∀w, u ∈ H.(10)

We remark that if the mapping m(u) is a Lipschitz continuous with constant ν1 > 0,
then, from (9) and (10), we have

‖Pm(u)Kw − Pm(v)+Kw‖ = ‖m(u)−m(v) + PK [w −m(u)]− PK [w −m(v)]‖
≤ 2‖m(u)−m(v)‖ ≤ 2ν1‖u− v‖.

This shows that the projection operator Pm(u)+K is Lipschitz continuous with con-
stant 2ν1 > 0. and satisfies the Assumption 2.1 with ν = 2ν1.

We now show that the quasi variational inequalities (1) are equivalent to the
implicit fixed point problem. This result can be proved by using Lemma 2.1. See
also Noor [9].
Lemma 2.2. The function u ∈ K(u) is a solution of the quasi variational
inequality (1) if and only if u ∈ K(u) satisfies the relation

u = PK(u)[u− ρTu],

where ρ > 0 is a constant.
Lemma 2.2 implies that quasi variational inequalities and the fixed point prob-

lems are equivalent. This alternative equivalent formulation has played a signifi-
cant role in the studies of the quasi variational inequalities and related optimization
problems.

We now state the problem.
Remark 2.3. Let S be a nonexpansive mapping. We denote the set of the fixed
points of S by F (S) and the set of the solutions of the quasi variational inequalities
(2.1) by QV I(K,T ). If x∗ ∈ F (S)∩V I(K,T ), then x∗ ∈ F (S) and x∗ ∈ V I(K,T ).
Thus from Lemma 2.2, it follows that

x∗ = Sx∗ = PK(u)[x∗ − ρTx∗] = SPK(u)[x∗ − ρTx∗],(11)

where ρ > 0 is a constant.
This fixed point formulation is used to suggest the following iterative method

for finding a common element of two different sets of solutions of the fixed points
of the nonexpansive mappings and the variational inequalities.
Algorithm 2.1. For a given u0 ∈ K(u), compute the approximate solution xn
by the iterative schemes

un+1 = (1− an)un + anSPK(un)[un − ρTun],

where an ∈ [0, 1] for all n ≥ 0 and S is the nonexpansive operator. Algorithm 2.1
is also known as a Mann iteration. For the convergence analysis of Algorithm 2.1,
see Huang and Noor [24] and Noor [16,17].

Related to the variational inequalities, we have the problem of solving the Wiener-
Hopf equations. To be more precise, let QK(u) = I − SPK(u), where PK(u) is the
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projection of H onto the closed convex set K(u), I is the identity operator and S
is the nonexpansive operator. We consider the problem of finding z ∈ H such that

TSPK(u)z + ρ−1QK(u)z = 0,(12)

which is called the implicit Wiener-Hopf equation involving the nonexpansive op-
erator S. For S = I, the identity operator, we obtain the implicit Wiener-Hopf
equation, introduced by Noor [14]. If S = I, and K(u) = K, then the implicit
Wiener-Hopf equations (12) reduce to the original Wiener-Hopf equations consid-
ered and studied by Shi [31] in relation with the classical variational inequalities.
Using essentially the technique of the projection operator, one can establish the
equivalence between the Wiener-Hopf equations and variational inequalities. This
alternative equivalence has played a fundamental and basic role in developing some
efficient and robust methods for solving variational inequalities and related opti-
mization problems. The Wiener-Hopf equation technique has been used to study
the sensitivity analysis and asymptotical stability of the variational inequalities, see
[11-27,30,31]. It has been shown that the Wiener-Hopf equation technique is more
flexible and general than the projection method and its variant form.
Definition 2.1. An operator T : H → H is called µ-Lipschitzian if, there exists a
constant µ > 0, such that

||Tx− Ty|| ≤ µ||x− y||, ∀x, y ∈ H.

Definition 2.2. An operator T : H → H is called α-inverse strongly monotone (or
co-coercive ) if, there exists a constant α > 0, such that

〈Tx− Ty, x− y〉 ≥ α||Tx− Ty||2, ∀x, y ∈ H.

Definition 2.3. An operator T : H → H is called r-strongly monotone if, there
exists a constant r > 0 such that

〈Tx− Ty, x− y〉 ≥ r||x− y||2, ∀x, y ∈ H.

Definition 2.4. An operator T : H → H is called relaxed (γ, r)-cocoercive if, there
exists constants γ > 0, r > 0, such that

〈Tx− Ty, x− y〉 ≥ −γ||Tx− Ty||2 + r||x− y||2, ∀x, y ∈ H.

Remark 2.1. Clearly a r-strongly monotone operator or a γ-inverse strongly mono-
tone operator must be a relaxed (γ, r)-cocoercive operator, but the converse is not
true. Therefore the class of the relaxed (γ, r)-cocoercive operators is the most gen-
eral class, and hence definition 2.4 includes both the definition 2.2 and the definition
2.3 as special cases.
Remark 2.2. From definition 2.2, it follows that if T is α-inverse strongly
monotone (or co-coercive), then T is also Lipschitz continuous with constant 1

α .

Lemma 2.3 [34]. Suppose {δk}∞k=0 is a nonnegative sequence satisfying the
following inequality:

δk+1 ≤ (1− λk)δk + σk, k ≥ 0,

with λk ∈ [0, 1],
∑∞
k=0 λk =∞, and σk = o(λk). Then limk→∞ δk = 0.
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3. Main Results

In this section, we use the Wiener-Hopf equations to suggest and analyze an
iterative method for finding the common element of the nonexpansive mappings
and the variational inequalities QVI(T,K). For this purpose, we need the follow-
ing result, which can be proved by using Lemma 2.2. However, for the sake of
completeness, we include its proof.
Lemma 3.1. The element u ∈ K(u) is a solution of quasi variational inequality
(1) if and only if z ∈ H satisfies the implicit Wiener-Hopf equation (12), where

u = PK(u)z,(13)
z = u− ρTu,(14)

where ρ > 0 is a constant.
Proof. Let u ∈ K(u) be a solution of VI(K,T). Then, from Lemma 2.3 and
Remark 2.3, we have

u = SPK(u)[u− ρTu].(15)

Let

z = u− ρTu.(16)

Form (15) and (16), we have

u = SPK(u)z, z = u− ρTu,
from which, we have

z = SPK(u)z − ρTSPK(u)z,

which is exactly the implicit Wiener-Hopf equation (12), the required result. �
From Lemma 3.1, it follows that the quasi variational inequality (1) and the

implicit Wiener-Hopf equation (12) are equivalent. This alternative equivalent for-
mulation has been used to suggest and analyze a wide class of efficient and robust
iterative methods for solving variational inequalities and related optimization prob-
lems, see [3-16] and the references therein. We denote the set of the solutions of
the Wiener-Hopf equations by IWHE(H,T,S).

Using Lemma 3.1 and Remark 2.3, we now suggest and analyze a new iterative
algorithm for finding the common element of the solution sets of the quasi varia-
tional inequalities and nonexpansive mappings S and this is the main motivation
of this paper.
Algorithm 3.1. For a given z0 ∈ H, compute the approximate solution zn+1 by
the iterative schemes

un = SPK(un)zn(17)
zn+1 = (1− an)zn + an{un − ρTun}(18)

where an ∈ [0, 1] for all n ≥ 0 and S is a nonexpansive operator. For S = I,
the identity operator, Algorithm 3.1 reduces to the following iterative method for
solving quasi variational inequalities (1) and appears to be a new one.
Algorithm 3.2. For a given z0 ∈ H, compute the approximate solution zn+1 by
the iterative schemes

un = PK(un)zn

zn+1 = (1− an)zn + an{un − ρTun}.
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For an = 1 and S = I, the identity operator, Algorithm 3.1 collapses to the following
iterative method for solving quasi variational inequalities (1).
Algorithm 3.3. For a given z0 ∈ H, compute the approximate solution zn+1 by
the iterative schemes

un = PK(un)zn

zn+1 = un − ρTun.

If K(u) = K, the convex set in H, then Algorithms 3.1-3.3 reduce to the following
algorithms for solving variational inequalities (8) and nonexpansive mapping, which
are due to Noor and Huang [25].
Algorithm 3.4. For a given z0 ∈ H, compute the approximate solution zn+1 by
the iterative schemes

un = SPKzn

zn+1 = (1− an)zn + an{un − ρTun}

where an ∈ [0, 1] for all n ≥ 0 and S is a nonexpansive operator. For S = I,
the identity operator, Algorithm 3.4 reduces to the following iterative method for
solving variational inequalities (8) and appears to be a new one.
Algorithm 3.5. For a given z0 ∈ H, compute the approximate solution zn+1 by
the iterative schemes

un = PKzn

zn+1 = (1− an)zn + an{un − ρTun}.

For an = 1 and S = I, the identity operator, Algorithm 3.4 collapses to the following
iterative method for solving variational inequalities (2.8).
Algorithm 3.6. For a given z0 ∈ H, compute the approximate solution zn+1 by
the iterative schemes

un = PKzn

zn+1 = un − ρTun.

We now study the conditions under the approximate solution obtained from
Algorithm 3.1

Theorem 3.1. Let T be a relaxed (γ, r)-cocoercive and µ-Lipschitzian mapping
and S be a nonexpansive mapping such that F (S)∩IWHE(H,T, S) 6= ∅. Let {zn}
be a sequence defined by Algorithm 2.1, for any initial point z0 ∈ H. If Assumption
2.1 holds and

|ρ− r − γµ2

µ2
| ≤

√
(r − γµ2)2 − µ2ν(2− ν)

µ2
,(19)

r > γµ2 + µ
√
ν(2− ν), ν ∈ (0, 1),

an ∈ [0, 1] and
∑∞
n=0 an = ∞, then zn converges strongly to z∗ ∈ F (S) ∩

IWHE(H,T, S).
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Proof. Let z∗ ∈ H be a solution of F (S) ∩ IWHE(H,T, S). Then, from
Lemma 3.1, we have

u∗ = anSPK(u∗)z
∗(20)

z∗ = (1− an)z∗ + an{u∗ − ρTu∗}(21)

where an ∈ [0, 1] and u∗ ∈ K is a solution of QVI(K,I). To prove the result, we
need first to evaluate ||zn+1 − z∗|| for all n ≥ 0. From (18) and (21), we have

||zn+1 − z∗|| = ||(1− an)zn + an{un − ρTun}
−(1− an)z∗ − an{u∗ − ρTu∗}||

≤ (1− an)||zn − z∗||+ an||un − u∗ − ρ(Tun − Tu∗)||.(22)

From the relaxed (γ, r)-cocoercive and µ-Lipschitzian definition on T , we have

||un − u∗ − ρ(Tun − Tu∗)||2

= ||un − u∗||2 − 2ρ〈Tun − Tu∗, un − u∗〉+ ρ2||Tun − Tu∗||2

≤ ||un − u∗||2 − 2ρ[−γ||Tun − Tu∗||2 + r||un − u∗||2]
+ρ2||Tun − Tu∗||2

≤ ||un − u∗||2 + 2ργµ2||un − u∗||2 − 2ρr||un − u∗||2 + ρ2µ2||un − u∗||2

= [1 + 2ργµ2 − 2ρr + ρ2µ2]||un − u∗||2

= θ21‖un − u∗‖2,(23)

where

θ1 =
√

1 + 2ργµ2 − 2ρr + ρ2µ2.(24)

Combining (22) and (23), we have

‖zn+1 − z∗‖ ≤ (1− an)‖zn − z∗‖+ anθ1‖un − u∗‖.(25)

From (17), (20) and the Assumption 2.1., we have

‖un − u∗‖ ≤ an‖SPK(un)zn − SPK(u∗)z
∗‖

≤ ‖PK(un)zn − PK(un)z
∗‖+ ‖PK(un)z

∗ − PK(u∗)z
∗‖

≤ ν‖un − u∗‖+ ‖zn − z∗‖,

which implies that

‖un − u∗‖ ≤
1

1− ν
‖zn − z∗‖.(26)

From (25) and (26), we obtain that

||zn+1 − z∗|| ≤ (1− an)||zn − z∗||+ anθ‖zn − z∗‖
= [1− an(1− θ)]||zn − z∗||,

where

θ =

√
1 + 2ργµ2 − 2ρr + ρ2µ2

1− ν
< 1, using (19),

and hence by Lemma 2.3, limn→∞ ||zn − z∗|| = 0, completing the proof. �

We now prove the strong convergence of Algorithm 3.1 under the α-inverse
strongly monotonicity.
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Theorem 3.2. Let K(u) be a closed convex subset of a real Hilbert space H. Let
T be an α-inverse strongly monotonic mapping with constant α > . and S be a
nonexpansive mapping such that F (S) ∩ IWHE(H,T ) 6= ∅. If

|ρ− α| ≤ α(1− ν), ν ∈ (0, 1),(27)

then the approximate solution obtained from Algorithm 3.1 converges strongly to
z∗ ∈ F (S) ∩ IWHE(H,T ).

Proof. Let T be α-inverse strongly monotone with the constant α > 0, then T
is 1

α–Lipschitzian continuous. Consider

||un − u∗ − ρ[Tun − Tu∗]||2

= ||un − u∗||2 + ρ2||Tun − Tu∗||2 − 2ρ〈Tun − Tu∗, un − u∗〉
≤ ||un − u∗||2 + ρ2||Tun − Tu∗||2 − 2ρα||Tun − Tu∗||2

= ||un − u∗||2 + (ρ2 − 2ρα)||Tun − Tu∗||2

≤ ||un − u∗||2 + (ρ2 − 2ρα) · 1
α2
||un − u∗||2

=
(

1 +
(ρ2 − 2ρα)

α2

)
||un − u∗||2 = θ2‖un − u∗‖2,(28)

where

θ2 = (1 +
(ρ2 − 2ρα)

α2
)1/2.(29)

From (27), (28) and (29), we have

||zn+1 − z∗|| ≤ (1− an)||zn − z∗||+ an||un − u∗ − ρ(Tun − Tu∗)‖
≤ (1− an)||xn − x∗||+ anθ2||un − u∗||
= [1− an(1− θ3)]||zn − z∗||,

where

θ3 =

√
1 + ρ2−2ρα

α2

1− ν
< 1, using (26).

Therefore, it follows limn→∞ ||zn − z∗|| = 0 from Lemma 2.3, completing the
proof. �

4. Computational Aspects

In this paper, we have shown that the variational inequalities are equivalent to
a new class of Wiener-Hopf equations involving the nonexpansive operator. This
equivalence is used to suggest and analyze an iterative method for finding the
common element of set of the solutions of the variational inequalities and the set of
the fixed-points of the nonexpansive operator. It is worth mentioning that Pitonyak,
Shi and Schiller [30] and Noor, Wang and Xiu [28] used the Wiener-Hopf equations
technique to develop some very efficient and numerically implementable iterative
methods for solving variational inequalities and related optimization problems. The
results are encouraging and perform better than other methods. It is interesting to
use the techniques and ideas of this paper to develop other new iterative methods
for solving the quasi variational inequalities involving the nonexpansive operators.
This is another direction for future work.
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