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THETANULLS OF CYCLIC CURVES OF SMALL GENUS

E. PREVIATO, T. SHASKA, AND G. S. WIJESIRI

ABSTRACT. We study relations among the classical thetanulls of cyclic curves,
namely curves X (of genus g(X) > 1 ) with an automorphism o such that o
generates a normal subgroup of the group G of automorphisms, and g (X' /(o)) =
0. Relations between thetanulls and branch points of the projection are the
object of much classical work, especially for hyperelliptic curves, and of recent
work, in the cyclic case. We determine the curves of genus 2 and 3 in the locus
Mg(G, C) for all G that have a normal subgroup (o) as above, and all possible
signatures C, via relations among their thetanulls.

1. INTRODUCTION

In this paper we consider cyclic algebraic curves, over the complex numbers.
These are by definition compact Riemann surfaces X of genus g > 1 (unless we
allow singular points, as noted below, so as not attach unnecessary qualifications to
a definition or statement), admitting an automorphism o such that X /o = P! and
o generates a normal subgroup of the automorphism group Aut(X) of X. When
the curve is hyperelliptic, we insist that the curve have “extra automorphisms”,
in particular ¢ is not the hyperelliptic involution. Note that the condition implies
to having an equation y™ = f(z) for the curve, where z is an affine coordinate
on P!, o has order n, and 1,y,0y,...,0" 'y is a basis of C(X)/C(z). Naturally,
the branch points of 7 : X — P!, together with the signature C of the cover
(its monodromy up to conjugation) provide algebraic coordinates for the curve in
moduli, though the same curve could be represented in different ways. The problem
of expressing these algebraic data in terms of the transcendental (period matrix,
thetanulls, e.g.) is classical. We use below formulas for genus-2 curves due to
Rosenhein and Picard, Thomae’s formulas for hyperelliptic curves, and a recent
generalization of the latter for cyclic curves with (s) = C3, where we denote by C,,
the cyclic group of order n, due to Nakayashiki [8]; several other authors recently
obtained partial generalizations to cyclic curves also. We do not aim here at a
complete account of the classical or contemporary work on these problems.

Cyclic curves are rare in the moduli space M, of smooth curves, and it is de-
sirable to characterize their locus, by algebraic conditions on the equation of the
curve, or by analytic conditions on its Abelian coordinates, in other words, theta
functions, and better yet, by both. We achieve this for genera 2 and 3, making
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recourse to classical formulas, some recent results of Hurwitz space theory, and
symbolic manipulation.

The contents of the paper are as follows. In section 2 we recall the notation
for Riemann’s theta function, as well as classical facts on theta characteristics; we
recall Frobenius’ and Thomae’s formulas for hyperelliptic curves. In sections 3 and
4, respectively, we specialize to the case of genera 2 and 3, we recall recent results
on My(G,C), and we calculate thetanull constraints that define the loci of the
cyclic curves, using the results we cited. The cleanest case is the one of genus 2 and
(o) 2 Cy, which was classified by Jacobi who gave a condition in terms the branch
points of the hyperelliptic involution; such a condition was extended, in principle,
to any curve in My(Cp, C), cf. [3] or [9], but the algebraic equation satisfied by
the branch points would rapidly become intractable with the size of n.

2. PRELIMINARIES

In this section we give a brief description of the basic setup. All of this material
can be found in any standard book on theta functions.

Let X be a genus g > 2 algebraic curve. We choose a symplectic homology basis
for X, say {A1,..., Ay, B1,..., By}, such that the intersection products A4; - A; =
B;-Bj =0and A; - B; = §;;, where d;; is the Kronecker delta. We choose a basis
{w;} for the space of holomorphic 1-forms such that [ A, W = 0ij. The matrix

Q= [IBZ- w]} is the period matriz of X. The columns of the matrix [I |Q2] form a

lattice L in CY9 and the Jacobian of X is Jac (X) = C9/L. Let Hy be the Siegel
upper-half space. Then 2 € H, and there is an injection

My — Hy/Sp2y(Z) =2 Ay

where Spag(Z) is the symplectic group. For any z € C9 and 7 € H, Riemann’s theta
function is defined as
9(2’ 7_) _ Z ewi(ut‘ru-l-Zutz)
u€eZI

where u and z are g—dimensional column vectors and the products involved in the
formula are matrix products. The fact that the imaginary part of 7 is positive makes
the series absolutely convergent over any compact sets. Therefore, the function is
analytic. The theta function is holomorphic on C9 x H, and satisfies

0(z+u,7)=0(z,7), O(z+ur,7)= g milut Tut2ztu) 0(z, 1),
where u € Z9; see [6] for details. Any point e € Jac (X) can be written uniquely

as e = (b,a) 16 , where a,b € R9. We shall use the notation [e] = Z for the

characteristic of e. For any a,b € Q9, the theta function with rational characteristics
is defined as
a _ 7ri((u+a)t7(u+a)+2(u+a)t(z+b))
Q[b} (z,T)—Ze .
u€ZI
When the entries of column vectors a and b are from the set {0,1}, then the

characteristics {Z] are called the half-integer characteristics. The corresponding

theta functions with rational characteristics are called theta characteristics. A
scalar obtained by evaluating a theta characteristic at z = 0 is called a theta
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constant. Points of order n on Jac y are called the %—periods. Any half-integer
characteristic is given by

1 1 myp Mmoo my
m=-m= 2 / / 7
2 2 ml m2 e mg

where m;, m/ € Z. For ~ 7,,} € 1729 /729 we define e, () = (=1)20)"Y"" Then,

gl
0(=z,7) = e.(m)0V](2, 7).

We say that v is an even (resp. odd) characteristic if e.(y) = 1 (resp. e.(y) = —1).
For any curve of genus g, there are 2971(29 + 1) (respectively 2971(29 — 1) ) even
theta functions (respectively odd theta functions). Let a be another half integer
characteristic. We define ma as follows.

1 [ty to --- tg>
ma= -
2(15’1 th .- t’g
where t; = (m; +a;) mod 2 and t; = (m} +a}) mod 2.

For the rest of this section we consider only characteristics %q in which each of
the elements ¢;, ¢; is either 0 or 1. We use the following abbreviations

[

g g
m| =" mmi, m,al = > (mfa; — mial),
=1 i=1
_ m o omiy I m.a’;
im, a, 6| = |, b] + |6, m| + [m, al, (a) i

The set of all half integer characteristics forms a group I' which has 229 elements.
We say that two half integer characteristics m and a are syzygetic (resp., azygetic)
if /m,a] =0 mod 2 (resp., [m,a] =1 mod 2) and three half integer characteristics
m, a, and b are syzygetic if [m,a,b] =0 mod 2.

A Gopel group G is a group of 2" half integer characteristics where r < g such
that every two characteristics are syzygetic. The elements of the group G are formed
by the sums of r fundamental characteristics; see [4, pg. 489] for details. Obviously,
a Gopel group of order 2" is isomorphic to C3. The proof of the following lemma
can be found on [4, pg. 490].

Lemma 1. The number of different Gopel groups which have 2" characteristics is
(229 _ 1)(22972 _ 1) . (22g72r+2 _ 1)
2r-nE-t-1---(2-1)

If G is a Gopel group with 2" elements, then it has 229~" cosets. The cosets
are called Gdpel systems and denoted by aG, a € I'. Any three characteristics of a
Gopel system are syzygetic. We can find a set of characteristics called a basis of the
Gopel system which derives all its 2" characteristics by taking only the combinations
of any odd number of characteristics of the basis.

Lemma 2. Let g > 1 be a fized integer, v be as defined above and o = g — 7.
Then there are 2°~1(2° + 1) Gdipel systems which consist of even characteristics
only and there are 2°~1(2° — 1) Gépel systems which consist of odd characteristics.
The other 227 (2" — 1) Gépel systems consist as many odd characteristics as even
characteristics.

Proof. The proof can be found on [4, pg. 492]. O
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Corollary 3. When r = g we have only one (resp., 0) Gopel system which consists
of even (resp., odd) characteristics.

Proposition 4. The following statements are true.

) Plae?lan] = 5 3 e D)l

(2) 94[(1] + em’|u,h\04[ab] _ 29%1 Zewi|ae|{94[e] + ewi\a,h|04[eh]}

where O[e] is the theta constant corresponding to the characteristic e, a and b are
any half integer characteristics and e is an even characteristic such that |e| = |eb|
mod 2. There are 2-2972 (2971 + 1) such candidates for e.

Proof. For the proof, see [4, pg. 524]. O

The statements given in the proposition above can be used to get identities
among theta constants; see section 3.

2.1. Cyclic curves with extra automorphisms. A normal cyclic curve is an
algebraic curve X such that there exist a normal cyclic subgroup C,,, < Aut(X’) such
that g(X'/Cy,) = 0. Then G = G /C,,, embeds as a finite subgroup of PGL(2,C). An
affine equation of a birational model of a cyclic curve can be given by the following
S
(3) y" = f(x) = H(:v — )%, 0<d; <m.
i=1

Hyperelliptic curves are cyclic curves with m = 2. Note that when 0 < d; for
some i the curve is singular. A hyperelliptic curve X is a cover of order two of the
projective line P*. Let z be the generator (the hyperelliptic involution) of the Galois
group Gal(X /P). It is known that (z) is a normal subgroup of the automorphism
group Aut(X). Let X — P! be the degree 2 hyperelliptic projection. We can
assume that infinity is a branch point. Let

B = {O[l,O[Q,"' 7a2g+1}

be the set of other branch points. Let S = {1,2,---,2g 4 1} be the index set of B
andnp:S — %229/229 be a map defined as follows;

. 0 02 0 - 0

2= | 2 }

1 100 -0

. 0 0 20 - 0

2 = | ; }

boep b
where the nonzero element of the first row appears in ‘" column. We define 7(c0)
to be [8 8 8] . For any T' C B, we can define the half-integer characteristic

as

nr =Y nk).

ar€eT

Let T° denote the complement of T in B. Note that np € Z29. If we view nr as
an element of %ZQQ /79 then ny = nre. Let A denote the symmetric difference of
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sets, that is T'A R= (T UR) — (TN R). It can be shown that the set of subsets of
B is a group under A. We have the following group isomorphism

1
{TCB|#T=g+1 mod 2}/T = 5ZQ-‘J/ZQQ.

For hyperelliptic curves, it is known that 29-(29 +1) — (29;1) of the even theta
constants are zero. The following theorem provides a condition on the characteris-

tics in which theta characteristics become zero. The proof of the theorem can be
found in [7, pg. 102].

Theorem 5. Let X be a hyperelliptic curve, with a set B of branch points. Let
S be the index set as above and U be the set of all odd values of S. Then for all
T C S with even cardinality, we have Olnr] = 0 if and only if #(TAU) # g+ 1,
where O[nr] is the theta constant corresponding to the characteristics nr.

Notice also that by parity, all odd theta constants are zero. There is a formula
(so called Frobenius’ theta formula) which half-integer theta characteristics for
hyperelliptic curves satisfy.

Lemma 6 (Frobenius). For all z; € C9, 1 <1i <4 such that 21 + 22+ 23+ 24 =0
and for all b; € Q29,1 < i < 4 such that by + by + b3 + by = 0, we have

> w0+ a0l =0

jESU{c0}

where for any A C B,
1 ifke A
calk) = { g

—1 otherwise

Proof. See [6, pg. 107].
O
A relationship between theta constants and the branch points of the hyperelliptic
curve is given by Thomae’s formula.

Lemma 7 (Thomae). For a non singular even half integer characteristics e cor-
responding to the partition of the branch points {1,2,--- ,2(g + 1)} = {i1 < iz <
c <l f UG <j2 < <Jgt1}, we have

0[6](0;7—)8 =A H()\lk - )\il)Q()\jk - )‘11)2'
k<l
See [6, pg. 128] for the description of A and [6, pg. 120] for the proof. Using
Thomae’s formula and Frobenius’ theta identities we express the branch points of
the hyperelliptic curves in terms of even theta constants.

3. GENUS 2 CURVES

The automorphism group G of a genus 2 curve X in characteristic # 2 is isomor-
phic to Za, Z10, V4, Dg, D12, SLa(3), GL2(3), or 2TS5. The case when G =27 S5
occurs only in characteristic 5. If G2 SL4(3) (resp., GL2(3)) then X has equation
Y? = X%—1 (resp., Y? = X(X*-1)). If G=Zo then X has equation Y2 = X6 X.
For a fixed G from the list above, the locus of genus 2 curves with automorphism
group G is an irreducible algebraic subvariety of Mas. Such loci can be described
in terms of the Igusa invariants.
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For any genus 2 curve we have six odd theta characteristics and ten even theta
characteristics. The following are the sixteen theta characteristics, where the first

ten are even and the last six are odd. For simplicity, we denote them by 6; = {Z]

instead of 6; {Z} (z,7) where i = 1,...,10 for the even theta functions.

0 0 0 0 0 0 0 0 1
n=lo o=y o=[p om0 3 =3
E) o & 11 o 1L 1

e R O R T TR
and the odd theta functions correspond to the following characteristics

o il B il ol 5 ol 36

RRRIRR
2 2 3 073 3710 3
Consider the following Gopel group

0 0 0 0 0 0 0
Gl R R RS

2
Then, the corresponding Gopel systems are given by:
[0 o] [0 o] [0 O
o={lo o o 413 ol |
0710 &[5 O
0 1
o-{fs |
o= {(1 ]|
o= ([}

Notice that from all four cosets, only G has all even characteristics as noticed in

Corollary 3. Using the Prop. 4 we have the following six identities for the above
Gopel group.

—

o
NIFNI= O O

[

o O

N O
S —
—

= O

- s =
H,_/H,_/Hf—/

NI DR O O O
= O

(@} S}
[—

—

——

O O NN
o= O O
,;‘ —
O O NN
NI = O

[

NN = O
INIEE NI NI NI

[
—

O

Ow=
—
—

ON=
B0 | =
—
—

0262 = 0302 — 0302
03 +65 = 01—035—03+01
0202 = 002 — 03202
67 + 03 01 — 03 + 03 — 04
030%, = 0303 — 030

03 +01, = 01+065—05—0;
These identities express even theta constants in terms of four theta constants. We
call them fundamental theta constants 61, 65, 63, 04.
Next we find the relation between theta characteristics and branch points of a
genus two curve.

Lemma 8 (Picard). Let a genus 2 curve be given by

(4) V2= X(X-1)(X - N)(X - p) (X —v).
Then, X\, u,v can be written as follows:
o) N T

- ) n= ) V= .
6363 636% 636%
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Proof. There are several ways for relating A, u, v to theta constants, depending on
the ordering of the branch points of the curve. Let B = {v, u, A, 1,0} be the branch
points of the curves in this order and U = {v, A\, 0} be the set of odd branch points.
Using Lemma 7 we have the following set of equations of theta constants and branch
points.
= AvA(p—1)(v = ) =Ap(p—1)(r—=2A)
= ApA(p— V(v — N 93 = AV = - )
(6) 94 Adp(v —1)(v — ) O =AW —p)v—N(p—2)
94=Au(v—1(A Dy =X 05 =Au(v—p)(A-1)
03 = Avi(u— (A= 1)(u— ) 0 = AAA = D)(v—p),
where A is a constant. Choosing the appropriate equation from the set Eq. (6) we
have the following:

2 (9%03)2 : <9§9§)2 ) <9%9§)2
0303 036%0 0363
Each value for (A, p, ) gives isomorphic genus 2 curves. Hence, we can choose

6303 630 6302
= UV = .
0302 "7 o202, 0302,

)\:

This completes the proof.
O

One of the main goals of this paper is to describe each locus of genus 2 curves
with fixed automorphism group in terms of the fundamental theta constants. We
have the following

Corollary 9. FEvery genus two curve can be written in the form:

6262 03 0% + 02 03 9202
where o = % and in terms of 61,...,04 is given by

o 01 +65—05— 6%
0103 — 6363
Furthermore, if a = +1 then Vi — Aut(X).

a+1=0

«

Proof. Let’s write the genus 2 curve in the following form:
Y2 =X(X-1)(X - \)(X —p)(X —v)

where A, u, v are given by Eq. (5). Let o := %. Then,

03 02
uzg—im V—eza

Using the following two identities,
08 + 01y =01 + 65— 05— 0}
6207, = 0363 — 0303

o, 0F+04—03— 62

1=
(8) ! 7202 — 0202 a+ 0
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If @« = +1 the pv = A. It is well known that this implies that the genus 2 curve has
an elliptic involution. Hence, Vj — Aut(X). O

Remark 10. i) From the above we have that 05 = 0%, implies that Vy — Aut(X).
Lemma 15 determines a necessary and equivalent statement when Vy — Aut(X).

ii) The last part of the lemma above shows that if O = 03, then all coefficients
of the genus 2 curve are given as rational functions of the 4 fundamental theta
functions. Such fundamental theta functions determine the field of moduli of the
giwen curve. Hence, the curve is defined over its field of moduli.

Corollary 11. Let X be a genus 2 curve which has an elliptic involution. Then X
is defined over its field of moduli.

This was the main result of [1].

3.1. Describing the locus of genus two curves with fixed automorphism
group by theta constants. The locus L5 of genus 2 curves A which have an
elliptic involution is a closed subvariety of My. Let W = {a1,aq, 81,82, 71,72}
be the set of roots of the binary sextic and A and B be subsets of W such that
W = AUB and |AN B| = 2. We define the cross ratio of the two pairs 21, 22; 23, 24
by

21523, 24 21 — X3 22— X3

(21,225 23, 24) = = : .

R23 %35 %4 Rl — R4 R2 24
Take A = {a1, 2,01, 82} and B = {y1,72, 01, B2} Jacobi [2] gives a description of
Lo in terms of the cross ratios of the elements of W.

aa-—Pph -~ _mn-0 n->H5K
a—=f2 az—P2 m—PF2 12—
We recall that the following identities hold for cross ratios:

(a1, a9 01, B2) = (a2, a1; B2, 1) = (b1, B2; 01, a2) = (B2, Bi; a2, 1)

and

(a1, 2500, B2) = (00, Bo; a1, 2) = (Ba; 2, 1)
Next we want to use this result to determine relations among theta functions for a
genus 2 curve in the locus £o. Let X be any genus 2 curve given by equation

V2= X(X - 1)(X —a1)(X —a2)(X — a3)
We take co € AN B. Then there are five cases for « € AN B, where « is an
element of the set{0, 1, a1, aq,a3}. For each of these cases there are three possible

relationships for cross ratios as described below:
i) AN B = {0,00}: The possible cross ratios are

(a1,1;00,0) = (as, ag; 00,0)

(az,1;00,0) = (a1, as;00,0)
(a1,1;00,0) = (ag, asz; 00,0)

ii) AN B ={1,00}: The possible cross ratios are
(a1,0;00,1) = (ag,as;00,1)
(a1,0;00,1) = (a3, az;00,1)

(a2a 0; oo, 1) = (alv as; o0, 1)
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iii) AN B = {a;,00}: The possible cross ratios are
(1,0;00,0a1) =
(az,0;00,a1) =
(1,0;00,0a1) =
v) AN B = {az,00}: The possible cross ratios are

(1,0;00,a2) = (a1, ag; 00, as)

(1707 OO,CLQ) = (a‘?n ai; 00, aQ)

(ala 07 o0, a2) =
v) AN B = {a3z,o0}: The possible cross ratios are

(a1,0;00,a3) =

(1707 OO,CI,?,) = (a‘27 1500, CLg)

(1707 OO,CI,?,) = (a‘lv a2; 0, CL3)

We summarize these relationships in the

(a3, az;00,a1)
(1,a3;00,0a1)

(a2a as; oo al)

(1,a3;00,a2)

(1,a2;00,a3)

following table:

Cross ratio f(a1,a2,a3) =0

theta constants

1 | (1,0500,a1) = (a3, az;00,a1) aijaz + a1 —agal —az

1;;?; 7203000+
9 +9 92 10

2 | (a2,0500,a1) = (1,a3;00,a1) | araz — a1 +agal — agaz

02626207 — 026507

Reiot, ~ 05030,

3 | (1,0;00,a1) = (a2, a3;00,a1) ajaz —ai —agay + ag

*%9%;%%@%+

4 | (1,0500,a2) = (a1, a3;00,a2) ajaz —az —agaz + ag

0367 — 0707,03+

0215;942-5-9]2 ]79 202,

5 | (1,0;00,a2) = (a3, a1; 00, az) ajaz — a1 + az —agaz

_92§§94+92910 4;-
07050%, — 030207,

6 | (a1,0;500,a2) = (1,a3;00,a2) | ajaz —agay — az + azaz

—02026207 + 9492004
21928922950 + 030307,

7 | (a1,0;00,a3) = (1,a2;00,a3) | ajaz —aga; — agzaz + ag

2020%,62
é% f 42 8 10 4
03 +9 026363,

8 | (1,0;00,a3) = (a2, a1;00,a3) azal — a1 — agaz + a3

I I
03 — 07,

9 | (1,0;00,a3) = (a1, a2;00,a3) azal +az — a3z — azaz

949894 —929294 o~
0762 0892+9892 2

10 | (a1,0500,1) = (a2, ag; o0, 1) —a1 +azal + a2 —ag

— 07026303
9 932 %920+920294

11 | (a1,0;00,1) = (a3, ag;00,1) ajaz — a1 —az +as

02602 — 07026%,07+
]28234 81%42
610_630821

12 | (a2,0500,1) = (a1, ag; 00, 1) a1 —az +agaz — ag

926264 - 029392 6%

020402 — 0202020 %
13 (a1,1;00,0) = (a3, ag; o0, 0) ajaz — a3 98*94110
14 | (ag,1;00,0) = (a1, as; 0o, 0) ay — agaz 63 — 603
15 | (a1,1;00,0) = (a2, ag; o0, 0) agay — ag 07 — 63

TABLE 1. Relation of theta functions and cross ratios

261
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Lemma 12. Let X be a genus 2 curve. Then Aut(X) =2V, if and only if the theta
functions of X satisfy

(07 = 02)(85 — 03) (05 — 01)(—07030303 — 07030307, + 016307, + 030307)

(03030307 — 030503 + 07030307, — 036367)(—030503 + 03030700 + 07030307, — 030301,)

(670503 — 07070603 + 0363601,0% + 07030507,) (—07036303 + 676705 + 070367, — 036367,67)

(—6760560303 + 0167003 — 07030367, + 0303670)(—036563 + 0703670605 — 0367067 + 03030367))

(010303 — 076365607, — 070363605 + 030303) (010505 — 070365607 — 07030367, + 030303)
(070305 — 070303,03 + 070307, — 03056367,) (070305 — 07030367, + 670507 — 63030365) =0

9)

However, we are unable to get a similar result for cases Dg or D15 by this argument.
Instead, we will use the invariants of genus 2 curves and a more computational
approach. In the process, we will offer a different proof of the lemma above.

Lemma 13. i) The locus Lo of genus 2 curves X which have a degree 2 elliptic
subcover is a closed subvariety of Mo. The equation of Lo is given by

874810 J5 Jg — 5073840005 J2 J2 — 192456002, J4Js — 592272J10J4 J2 + 7743601005 J5
—81J3J3 — 3499200102 Jg + 4743360J10J5 J2 Jg — 870912J10J7 I3 Jg + 309096010 J4 2 J2
—78J5J5 — 125971200000J5) + 384J5 Jg + 41472J10J5 + 1595 T3 — 23619677, J5 — 80J, Jo

(10 —47952J5 J4 Jg + 10497600075, J2 Jo — 17285 J3 J + 6048J; JoJg — 9331200102 Jo
+12J5 J3 Jo 4 29376J2 J2 J3 — 8910J3 J5 J5 — 20995200007 JaJs + 31104J5 — 691275 Jo4
—J T} = 5832J10J5 Jads — B5ATS T3S + 108J5 JaJE + 9720105 T + 133205 01 Js =0

it) The locus of genus 2 curves X with Aut(X) = Dg is given by the equation of Lo
and

(11)  1706J2J2 4 2560.J3 + 27.J4J5 — 81.J3Js — 14880.J5.J4.J5 + 28800.J% = 0
i11) The locus of genus 2 curves X with Aut(X) = Dg is
—JuJy + 1205 Js — 52J3 T3 4+ 80J3 + 960.J2J4J5 — 36003 = 0
(12)  864.J10J5 + 3456000.J19J5 Jo — 43200.J10.J4.J5 — 23328000007, — J7JS
—T68J1FJ3 + 483 J5 4 4096.JF = 0

Our goal is to express each of the above loci in terms of the theta characteristics.
We obtain the following result.

Theorem 14. Let X be a genus 2 curve. Then the following hold:
i) Aut(X) =2 Vy if and only if the relations of theta functions given Eq. (9) holds.
it) Aut(X) = Dg if and only if Eq. (1) in [10] is satisfied.
iii) Aut(X) = D1o if and only if Eq. (2) in [10] is satisfied.

Proof. Part i) of the theorem is Lemma 12. Here we give a somewhat different
proof. Assume that X is a genus 2 curve with equation

Y2 = X(X - 1)(X —a1)(X —a2)(X — a3)

whose classical invariants satisfy Eq. (10). Expressing the classical invariants of
X in terms of aj,as,as, substituting them into (10), and factoring the resulting
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equation yields

2 2 2
(a1a2 — a2 — azaz + a3)” (a1a2 — a1 + azar — azaz) (@162 — asar — asaz + as

)
(azai — a1 — azas + az)’(a1a2 + a1 — azar — az)*(a1a2 — a1 — azar + az)’
(13) (aza1 + az — a3 — asaz)*(—a1 + asar + az — az)’(ar1a2 — a1 — az + az)’
(a1a2 — a1 + a2 — a3a2)2(a1 — a2 + azaz — a3)2(a1a2 —azar — az + a3a2)2
(CL1CL2 — a3)2(a1 —_ a3a2)2(a3a1 — a2)2 =O
It is no surprise that we get the 15 factors of Table 1. The relations of theta
constants follow from the table. ii) Let X be a genus 2 curve which has an elliptic
involution. Then X is isomorphic to a curve with equation
Y2 = X(X - 1)(X —a1)(X —a2)(X — araz).

If Aut(X) = Dg then the SLo(k)-invariants of such curve must satisfy Eq. (11).
Then, we get the equation in terms of a1, as. By writing the relation a3 = ajas in
terms of theta constants, we get 6] = 63. All the results above lead to part ii) of
the theorem. iii) The proof of this part is similar to part ii). |

We would like to express the conditions of the previous lemma in terms of the
fundamental theta constants only.

Lemma 15. Let X be a genus 2 curve. Then we have the following:
i): Vi — Aut(X) if and only if the fundamental theta constants of X satisfy
(14)
(65 — 63) (67 — 65) (63 — 62) (61 — 63) (65 — 62) (67 — 62)
(=63 + 63 + 67 — 63) (65 — 05 + 07 — 03) (—05 — 03 + 05 + 67) (63 + 63 + 63 + 67)
(01102 + 05%02" + 01105" — 207050307 (—05%02" — 02704 — 0504 + 267030307)
(02104 + 01702 + 01%0." — 207030303) (01704* + 0504 + 01%65" — 267030303) =0
ii: Dg — Aut(X) if and only if the fundamental theta constants of X satisfy
Eq. (3) in [10]
iii: Dg — Aut(X) if and only if the fundamental theta constants of X satisfy
Eq. (4) in [10]
Proof. Notice that Eq. (9) contains only 61, 05,03, 64,05 and 61¢. Using Eq. (7), we
can eliminate fg and 6;¢ from Eq. (9). The Jj( invariant of any genus two curve is
given by the following in terms of theta constants:

01201
G
Since J1o # 0 we can cancel the factors (0203 —0260%), (0207 —60302) and (6362 —6302)
from the equation of Vj locus. The result follows from Theorem 14. The proof of
part ii) and iii) is similar and we avoid details. O

Jio (0703 — 0305) 2 (0705 — 0305)" (6105 — 030)".

Remark 16. i) For the other two loci, we can also obtain equations in terms of the
fundamental theta constants. However, such equations are big and we don’t display
them here.

ii) By using Frobenius’s relations we get

(6193)12

24
m (050667050,)

Jio =
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Hence, 0; #0 fori=1,3,5,...9.

For genus 3 we have hyperelliptic and non-hyperelliptic algebraic curves. The
following table gives all possible genus 3 cyclic algebraic curves; see [5] for details.
The first 11 cases are for the hyperelliptic curves and the last 12 cases are for the

4. GENUS 3 CYCLIC CURVES

non-hyperelliptic curves.

Aut(Xy) equation Id.
1 Zs v =x(x—1)(a°® +azt +bx® + ca’ +dx+e) | (2,1)
2 | Zo X Zo y? = 2% + aza® + apz® + arz® + 1 (4,2)
3 Zs y? = x(z® = 1)(z* 4+ ax?® + b) (4,1)
4 Z14 v=2"-1 (14, 2)
5 73 y? = (z* 4+ a2® + 1) (a* +ba® + 1) (8,5)
6 | Z2 x Ds =28 4az*+1 (16,11)
7 | ZoxZa y? = (z* = 1)(2* + ax® + 1) (8,2)
8 Do y? = x(2% 4+ ax® 4+ 1) (12,4)
9 Us y? =x(2® - 1) (24,5)
10 V& =21 (32,9)
11 | Zo x S4 yP =2 +142% +1 (48, 48)
12 | 2yt +ar?yP + b+t +1=0 (4,2)
13 Ds take b= ¢ (8,3)
14 S takea=b=c (24,12)
15 | C3%S; take a=b=c=0 or y* =z(2* 1) (96,64)
16 16 yi=z(x - 1)(z -1 (16,13)
17 48 yt=2a%-1 (48,33)
18 Cs v =az(x—1)(z —s)(z —1t) (3,1)
19 Cs take s =1—t¢ (6,2)
20 Coy P =x(z®-1) (9,1)
21 | L3(2) By+1y32+222=0 (168,42)
22 S3 a(z® +y* + 24 + b(ay? + 2222 + 2 2)+ (6,1)
c(2®yz + y?xz 4+ 22xy) = 0
23 Co x4+ 22 (y? + a2®) + byt + etz 4 dy2? (2,1)
+eyz® +g2* =0, eithere=1org=1

TABLE 2. The list of automorphism groups of genus 3 and their equations
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4.1. Theta functions for hyperelliptic curves. For genus three hyperelliptic
curve we have 28 odd theta characteristics and 36 even theta characteristics. The
following shows the corresponding characteristics for each theta function. The first
36 are for the even functions and the last 28 are for the odd functions. For simplicity,

we denote them by 0; = [Z} instead of 6; {Z] (z,7).
_[o 0 o0 10 2 [ 3 3 _[o o o0
91__0 0 0}’92_{5 i 5’93_0 0 0’94_; 0 0|’
i 1 1 1 1 1
L0 o0 L1 9 o L 4 0 0o %
_ 2 — 2 2 — 2 2 — 2
e ISR I B R O A IR PO
(0 0 0 1 0 0 11 9 1 1 1
w=lo o gooo=[3 5 o] o=t 1 o] ea=[i 3 1
(0 0 0] (0 1 0] 0 1 1] {0 1 0]
013 = ) 014 — 2 3 915 = 2 2 3 916 = 2 3
5 3 O 0 0 0 0 3 3 3 0 3]
(0 0 0] (0 0 1 1 1 9 0 % 0]
017 = _0 % %_ ) 018 = _0 O (2)_ ) 919 = _z % % ) 920 = 0 (2) %_ 9
(0 0 0 o L1 17 rH 1 1 1 0 1
021 = :| ) 022 = |: 2 2 ) 923 = 2 ? 2 ) 924 = 2 ?
0 3 0 0 0 0 3 3 0 3 0 3]
ri 7 r 1 r 1 17
L0 o 0 0 0 0 1 o0 0o o 1
e I B S A O S R A
ri 17 ri 1 17 ri 17 r 17
Lo 1 L1 1 L9 1 0o o 1
029 = (2) 0 (2) , O30 = (2) g g , 031 (2) % (2) , 032 = % 0 (2) )
[0 1 1] (0 0 0] (1 0 0] L1 0]
033 = -% g g- ) 034 = -% 0 %- ) 035 -8 % %- ) 036 = -(2) (2) O_
ri ] ri 1 ] ri 1 17 r 1 ¥
L0 0 L1 9 i1 1 0 L o0
037 = | 2 , 038 =2 % , 030 =12 2 21 604 = ? ,
2 0 0 0 5 0] 0 0 %] 2 5 0]
[0 1 17 (0 0 1] rr 1 17 (o 1 17
04 = B 8 ; , Oa2 = o 1 ; , Oa3 = g 3 3_ , Oaa = 0 g 8_ ,
(0 0 21 (0 1 0] EREE] (L 0 0]
Os5 = 0 o g , Oa6 = 0 % K Os7 = % 3 K Oss = % 1]
(L 0 1] (L 0 0] EREE (0 0o 2
Oi9= |7 1 (2),950— ? 0 1,951:8 T o4, b2=1]1 1 1%,
lz2 2 U] L2 2] v 3 3 2 2 2
o L1 1 o L o 1 g 1 11 1
om=o & 3| ou=l0 1 o om=lz o 3| me=[t T i].
L 2 2 2 2 2 2
ri 1 1 1 1 1 1 1
119 111 19 1 L0 o0
ow=i 5 o) em=[s 1 &) om=[i 5 ] w=[1 } 3]
ri 1 1 1 17 1
L9 1 0o o 1 o 1 1 0 L o0
061 = (2) 1 i:| ’ 062 = |:l 0 i:| 5 063 = |:l i (2) 5 064 == |:l i l:|
2 2 2 2 2 2 2 2 2

It can be shown that one of the corresponding even theta constants is zero. Let’s
pick S ={1,2,3,4,5,6,7} and U = {1,3,5,7}. Let T = U. Then, by Theorem 5 the

rr 1 1
theta constant corresponding to the characteristic nr = | % (2) %] is zero. That
L2 2

is #12(0) = 0. Next, we give the relation between theta characteristics and branch
points of the genus three hyperelliptic curve. Let B = {a1, as, ag, a4, as,1,0} be the
finite branch points of the curves and U = {aq, as, as,0} be the set of odd branch
points.
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02,08,
Proof. By using Lemma 7 we have the following set of equation of theta constants

2 p2
931921

Y? = X(X — 1)(X —a)(X —a)(X —a3)(X — ag)(X — as),

a1
and branch points which are ordered ai,as,as, a4, as,0,1,00. We use the notation
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Lemma 17. Any genus 3 hyperelliptic curve is isomorphic to a curve given by the
equation

where

(¢,7) for (a; — aj).

— —
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033" = A (2,6) (5,6) (1,3) (1,4) (3,4) (2,5) (2,7) (5,7)
034" = A (2,6) (3,6) (1,4) (1,5) (4,5) (2,3) (2,7) (3,7)
0ss” = A (1,6) (2,6) (5,6) (1,2) (1,5) (2,5) (3,4) (3,7) (4,7)
By using the set of equations given above we have several choices for a1, - ,a5 in
terms of theta constants.
Branch Points Possible Ratios
2 ( ) (ee) (esge%f
1 339%9 34 24 93693
2 63639 2 03667 2 63,675 2
a2 9 917 9150%9 9 924
2 929%2 2 9%1931 2 0792 2
a3 033017 9%492 0;6 15
(12 9%1939 2 9%192 2 9329f3 2
4 6202 015034 626%3
2 ( 003, )2 (efleéﬁ)Q (9%392>2
5 34 17 9 92
Let’s select the following choices for ay,--- ,as.
Y Y P . . . SRV
03403, 0503, 03405 07503, 03605
This completes the proof. ([

Remark 18. Unlike the genus 2 case, here only 61, 0g, 07, 011, 615, 024, 031 are
from one of the Gépel groups.

4.1.1. Genus 3 non-hyperelliptic cyclic curves. Using the Thomae’s like formula for
cyclic curves, for each cyclic curve y™ = f(x) one can express the roots of f(z) in
terms of ratios of theta functions as in the hyperelliptic case. In this section we
study such curves for ¢ = 3. We only consider the families of curves with positive
dimension since the curves which belong to 0-dimensional families are well known.
The proof of the following lemma can be found in [12].

Lemma 19. Let f be a meromorphic function on X, and let

N-Yon-3e
i=1 i=1
be the divisor defined by f. Let’s take paths from Py (initial point) to b; and Py to
¢i so that 377, f;; w=73" ;; w
For an effective divisor Py + --- + P, we have
H 00>, fPO f - A7)
CE RS Iy e Jye- )

where E is a constant independent of Pl, ..., Py, the integrals from Py to P; take the
same paths both in the numerator and in the denominator, A denotes the Riemann’s

Pj, Pi Pi ¢
constant and [p'w = ( [p wi,..., [p wy)

(15) f(Py) - f(Fy)
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Notice that the definition of thetanulls is different in this part from the definitions
of the hyperelliptic case. We define the following three theta constants.
0+ 0 0 %+ 0 0 %20
91:9{2 9 2} 92:9[1 by 1} 93:9[0 O
6

3 6 3 3 6 3
Next we consider the cases 16, 18, 19 from Table 4.

Case 18: If the automorphism group is C5 then the equation of X is given by

v =x(x—1)(z —s)(x—1).
Let Q; where i = 1..5 be ramifying points in the fiber of 0,1, s, ¢, co respectively.
Consider the meromorphic function f = z on X of order 3. Then we have (f) =

3Q1 — 3Qs5. By applying the Lemma 19 with Py = @5 and an effective divisor
2Q2 + Q3 we have the following.

3 Q Q bk
(16) Es:H6(2f 52w+f53w7 QZUJ*A’T)
patet 02 [o, wt [ w—2AOT)

Again apply the Lemma 19 with an effective divisor Q2 +2Q3 we have the following.

(17) E32—ﬁ0( 352w+2fQ53w7 Cl;;wiA’T)
Pl 0( 552w+2fQ53w7A,7)
By dividing Eq. (17) by Eq. (16) we have,

3 H(fQ52w+2fQ53w— é’gw—Am)
o1 g wt2 [ w—A4T)
3 2 3
1 02 [5; w+ [ wb— A, T)
102 o wt [olw— [grw— A7)

By a similar argument we have

S =

(18)

fﬁ 9(‘[@52w+2f@54w_ giw_A’T)

it 0(fo. w2 o) w—NA,T)
3 02 )5 w+t o, w—2D,T)

XH by

1025wt [orw— Jorw = A7)

Computing the right hand side of Eq. (18) and Eq. (19) was the one of the main
points of [11]. Finally, we have

(19)

3 3
s = z%, and r = Z%
Case 19: If the group is Cg then the equation is y® = x(x — 1)(z — s)(z — t) with
s =1 —t. By using results from case 18, we have
6 — 65— 3.
Case 16: In this case the equation of X is given by
yt=x(z —1)(z —t).
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This curve has 4 ramifying points @); where ¢ = 1..4 in the fiber of 0, 1, ¢, co respec-
tively. Consider the meromorphic function f = x on X of order 4. Then we have
(f) = 4Q1 —4Q4. By applying the Lemma 19 with Py = Q4 and an effective divisor
2Q2 + Q3 we have the following.

1 p2 Q2w+ ng— b w—A,T
(20) Bt=1] 2Ja, Ja, 5 Qi )
el 02 )5 w+t o, w—2D,T)

Again apply the Lemma 19 with an effective divisor Q2 +2Q3 we have the following.

Q
o1 B — 4 0( —|—2f w— Q AN D
( ) _H Q2 9 S u— A
k=1 f4w+ fQ4w aT)

We have the following by dividing Eq. (21) by Eq. (20)
2 3

—H 0(Jo, w+2 o, w—Qw—AT)

paie fQ42w+2fQ43w—A,7)

4 2 3
XH 02 )5 w+t Jo, w—2D,T)
k:19(2fQ42w+f w—fbkw—A )

In order to compute the explicit formula for ¢ one has to find the integrals on the

right hand side. Such computations are long and tedious and we intend to include
them in further work.

(22)

Remark 20. In the case 16) of Table 4, the parameter t is given by

Ole] = At — 1)*?,
where [e] is the theta characteristics corresponding to the partition ({1}, {2}, {3}, {4})
and A is a constant; see [8] for details. However, this is not satisfactory since we
would like t as a rational function in terms of theta. The methods in [8] do not lead

to another relation among t and the thetanulls since the only partition we could
take is the above.

Summarizing all of the above we have:

Lemma 21. Let X be a non-hyperelliptic genus 3 curve. The following are true:

i): If Aut(X)=Cs, then X is isomorphic to a curve with equation

st (o= ) (o).

ii): If Aut(X) = Cg, then X is isomorphic to a curve with equation

S=x(x—1) ac—@ x—f with 03 = 03 — 03
Yy = ef 93 2 — Y1 3

iii): If Aut(X) is isomorphic to the group with GAP identity (16,13), then X
18 isomorphic to a curve with equation

y* = x(x — 1)(z — t) with
where t is given by Eq. (22).
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It seems possible to generalize such techniques of computing the branch points
in terms of the theta functions for any cyclic cover of the projective line. We intend
to pursue the ideas of these papers in further work.
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