HYPERELLIPTIC CURVES WITH a-NUMBER 1 IN SMALL CHARACTERISTIC

ARSEN ELKIN AND RACHEL PRIES

Abstract

For every $g \geq 3$, we show there exists a hyperelliptic curve of genus g with p-rank $g-3$ and a-number 1 in characteristic p when $p=3$ or $p=5$. The method of proof is to show that a generic point of the moduli space of hyperelliptic curves of genus 3 and p-rank 0 has a-number 1 . When $p=3$, we also show that this moduli space is irreducible.

1. Introduction

Suppose X is a curve of genus g defined over an algebraically closed field k of characteristic p. The p-torsion of the $\operatorname{Jacobian~} \operatorname{Jac}(X)$ can be studied using invariants such as the p-rank σ_{X} and a-number a_{X}. In Section 2, we define these invariants. Briefly, the p-rank of X is $\sigma_{X}=\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{Hom}\left(\mu_{p}, \operatorname{Jac}(X)\right)$ where the group scheme μ_{p} is the kernel of Frobenius on \mathbb{G}_{m}. The a-number of X is $a_{X}=$ $\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, \operatorname{Jac}(X)\right)$ where the group scheme α_{p} is the kernel of Frobenius on \mathbb{G}_{a}. It is well known that σ_{X}, a_{X} are non-negative integers with $0 \leq \sigma_{X}+a_{X} \leq g$.

There are many open problems about the p-rank and a-number of curves. In some sense this is surprising, since there are algorithms to compute the p-rank and the a-number of X for a given prime p and a given curve X. However, these algorithms are not well-suited for proving existence results for curves of arbitrary genus in arbitrary characteristic. For this reason, many of the existence results on this topic are non-constructive and rely on deep theorems from arithmetic geometry, e.g., [2, Thm. 2.3].

A result from [8] is that, for every prime p and every $g \geq 3$, there exists a k-curve X of genus g with p-rank $g-3$ and a-number 1 . The author also gives a strategy for extending this result to the case of hyperelliptic curves and explains some of the difficulties involved with this strategy. In this paper, we carry out this strategy when $p=3$ and $p=5$, which yields the following result (found in Section 4).

Corollary 1.1. Suppose $g \geq 3$. Let $p=3$ or $p=5$. Then there exists a hyperelliptic curve of genus g in characteristic p with p-rank $g-3$ and a-number 1 .

For the proof, we consider the moduli space $\mathcal{H}_{3} \cap V_{3,0}$ whose points correspond to hyperelliptic curves of genus 3 with p-rank 0 . When $p=3$ and $p=5$, we give an explicit proof that every generic point of this moduli space has a-number 1 in Section 3. This provides the base case of an inductive process found in [8]. Using induction on g, we conclude that the locus of curves having a-number 1 is an open and dense subspace of the moduli space of hyperelliptic curves of genus g and p-rank $g-3$ (Theorem 4.2).

We also show that $\mathcal{H}_{3} \cap V_{3,0}$ is irreducible when $p=3$ (Proposition 3.5). It is an open question whether $\mathcal{H}_{3} \cap V_{0}$ is irreducible when $p>3$. We describe the computational complexity of this problem in Section 3.4.

The second author was partially supported by NSF grant DMS-07-01303. We thank J. Achter for his comments on drafts of this paper.

2. Invariants of the p-TORSION of Jacobians

2.1. The p-rank and a-number. Throughout the paper, we work over an algebraically closed field k of characteristic p. The group scheme μ_{p} is the kernel of Frobenius on \mathbb{G}_{m} and the group scheme α_{p} is the kernel of Frobenius on \mathbb{G}_{a}. As schemes, $\mu_{p} \simeq \operatorname{Spec}\left(k[x] /(x-1)^{p}\right)$ and $\alpha_{p} \simeq \operatorname{Spec}\left(k[x] / x^{p}\right)$. See [4, A.3] for more details about these group schemes.

Suppose X is a smooth projective k-curve of genus g with $\operatorname{Jacobian} \operatorname{Jac}(X)$. The p-rank of X is $\sigma_{X}=\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{Hom}\left(\mu_{p}, \operatorname{Jac}(X)\right)$ and the a-number of X is $a_{X}=$ $\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, \operatorname{Jac}(X)\right)$. The p-rank is the integer σ_{X} such that the number of p-torsion points of $\operatorname{Jac}(X)$ is $p^{\sigma_{X}}$. It is well-known that $0 \leq \sigma_{X}+a_{X} \leq g$.
2.2. Moduli spaces of curves with given invariants. Let \mathcal{M}_{g} denote the moduli space of smooth projective curves of genus g defined over k. Let $\mathcal{H}_{g} \subset \mathcal{M}_{g}$ denote the sublocus consisting of hyperelliptic curves. The dimension of \mathcal{H}_{g} is $2 g-1$. Let $V_{g, \sigma} \subset \mathcal{M}_{g}$ denote the closed sublocus consisting of curves of genus g with p-rank at most σ. Every irreducible component of $\mathcal{H}_{g} \cap V_{g, \sigma}$ has dimension $g-1+\sigma$ by [3, Thm. 1].

Let $T_{g, 2} \subset \mathcal{M}_{g}$ denote the closed sublocus of curves with a-number at least 2 . Recall that $T_{g, 2} \subset V_{g, g-2}$. If $g \geq 2$ and $\sigma=g-2$, the generic point of every irreducible component of $\mathcal{H}_{g} \cap V_{g, g-2}$ has a-number 1, [8, Thm. 4.1]. It follows that $\operatorname{dim}\left(\mathcal{H}_{g} \cap T_{g, 2}\right) \leq 2 g-4$. In particular, $\operatorname{dim}\left(\mathcal{H}_{3} \cap T_{3,2}\right) \leq 2$.

Remark 2.1. When $p=2$, every hyperelliptic cover is wildly ramified. As a result, the computation of the p-rank or a-number of a hyperelliptic curve differs significantly when $p=2$ from the case when p is odd. For example, every hyperelliptic curve of genus 3 and p-rank 0 has a-number 2 [2, 3.2]. For every finite field \mathbb{F} of characteristic 2 , and for $0 \leq \sigma \leq 3$, there is a formula for the number of isomorphism classes of hyperelliptic curves defined over \mathbb{F} with genus 3 and p-rank σ [5, Table 3].
2.3. Computing the p-rank and a-number. Suppose that $p \geq 3$ and that X is hyperelliptic. There is a $\mathbb{Z} / 2$-Galois cover $\phi: X \rightarrow \mathbb{P}_{k}^{1}$ with $2 g+2$ distinct branch points. Without loss of generality, we suppose ϕ is branched at ∞ and choose an affine equation for ϕ of the form $y^{2}=f(x)$, where $f(x) \in k[x]$ is a polynomial of degree $2 g+1$.

Let c_{s} denote the coefficient of x^{s} in the expansion of $f(x)^{(p-1) / 2}$. For $0 \leq \ell \leq$ $g-1$, let A_{ℓ} be the $g \times g$ matrix whose $i j$ th entry is $\left(c_{i p-j}\right)^{p^{\ell}}$. The matrix A_{0} is the Hasse-Witt matrix of X. The Cartier-Manin matrix is $M=\left(\prod_{\ell=0}^{g-1} A_{\ell}\right)$.

Lemma 2.2. Suppose X is a hyperelliptic curve of genus g with equation $y^{2}=f(x)$ as above.
(1) The a-number of X is $a_{X}=g-r$ where r is the rank of A_{0}.
(2) The p-rank of X is $\sigma_{X}=\operatorname{rank}(M)$.

Proof. The Hasse-Witt matrix of X is the matrix for the action of Frobenius on $H^{1}\left(X, \mathcal{O}_{X}\right)$. By duality, one can consider the matrix of the Cartier operator on $H^{0}\left(X, \Omega_{X}^{1}\right)$ instead. The result then follows from [11].
Remark 2.3. It is a general phenomenon that $a_{X}=0$ occurs only when $\sigma_{X}=g$ [6, p.416]. Lemma 2.2 illustrates this for hyperelliptic curves: if $a_{X}=0$ then A_{0} is invertible, and thus M is invertible, which implies that $\sigma_{X}=g$.

3. Hyperelliptic curves of genus 3

3.1. Parametrization of hyperelliptic curves of genus 3 . Let Y be a smooth hyperelliptic curve of genus 3 . Then Y has an affine equation $y^{2}=f(x)$ where $f(x) \in k[x]$ has distinct roots and is of degree 7 . We say that the equation $y^{2}=f(x)$ is in standard form if $f(x)=x^{7}+a x^{6}+b x^{5}+c x^{4}+d x^{3}+e x^{2}+x$ for some $a, b, c, d, e \in k$.
Lemma 3.1. Every smooth hyperelliptic curve Y of genus 3 has an affine equation $y^{2}=f(x)$ in standard form. There are only finitely many choices of $f(x)$ so that $y^{2}=f(x)$ is an affine equation in standard form for Y.
Proof. If Y is hyperelliptic then there is a morphism $\phi: Y \rightarrow \mathbb{P}_{k}^{1}$ of degree 2. If Y has genus 3 then the Riemann-Hurwitz formula implies that the branch locus B of ϕ contains exactly 8 points. After a change of coordinates on \mathbb{P}_{k}^{1}, we can suppose $0, \infty \in B$. Then ϕ is given by an affine equation of the form $y^{2}=f(x)$ for some $f(x) \in k[x]$ with $\operatorname{deg}(f(x))=7$ and $f(0)=0$. Write $f(x)=\sum_{i=1}^{7} a_{i} x^{i}$ where $a_{i} \in k$ and $a_{1} a_{7} \neq 0$.

Consider a change of coordinates $T(y)=\alpha y$ and $T(x)=\beta x$ with $\alpha, \beta \in k$ and $\alpha \beta \neq 0$. Let $f_{T}(x)=\left(a_{7} \beta^{7} / \alpha^{2}\right) x^{7}+\cdots+\left(a_{1} \beta / \alpha^{2}\right) x$. Then $y^{2}=f_{T}(x)$ is another affine equation for Y. Let $\alpha, \beta \in k^{*}$ be solutions to $\alpha=\left(a_{1}^{7} / a_{7}\right)^{1 / 12}$ and $\beta=\left(a_{1} / a_{7}\right)^{1 / 6}$. Then the equation $y^{2}=f_{T}(x)$ is in standard form.

Suppose $y^{2}=f_{1}(x)$ and $y^{2}=f_{2}(x)$ are two equations for Y in standard form. Then there is a change of coordinates $T: k[x, y] /\left(y^{2}-f_{1}(x)\right) \rightarrow k[x, y] /\left(y^{2}-\right.$ $f_{2}(x)$). Since the hyperelliptic involution is in the center of $\operatorname{Aut}(Y)$, the change of coordinates descends to an automorphism T of \mathbb{P}_{k}^{1}. Also T stabilizes $\{0, \infty\}$. After possibly composing T with an inversion $x \mapsto 1 / x$, we can suppose T fixes 0 and ∞. It follows that $T(x)=\beta x$ and $T(y)=\alpha y$ for some $\alpha, \beta \in k^{*}$. Then $\beta^{7} / \alpha^{2}=\beta / \alpha^{2}=1$. Thus $\beta^{6}=1$ so there are at most 6 choices for β and for each of these there are at most 2 choices for α.
3.2. Irreducibility of $\mathcal{H}_{3} \cap V_{3,0}$ when $p=3$. In this section, suppose $p=3$. The main result of the section is that $\mathcal{H}_{3} \cap V_{3,0}$ is irreducible. In the next lemma, we first show that all smooth hyperelliptic curves Y of genus 3 have a-number at most 1. The lemma is a special case of [1, Thm. 1], but we include a proof for the convenience of the reader. See [10] for similar results for curves that are not hyperelliptic.

Lemma 3.2. If $p=3$, then $\mathcal{H}_{3} \cap T_{3,2}=\emptyset$. In other words, there are no smooth hyperelliptic curves of genus 3 with a-number at least 2 .

Proof. Suppose Y is a smooth hyperelliptic curve of genus 3. By Lemma 3.1, Y has an affine equation $y^{2}=f(x)$ where $f(x)=x^{7}+a x^{6}+b x^{5}+c x^{4}+d x^{3}+e x^{2}+x$. If $p=3$, the entries of A_{0} are given by the coefficients of $f(x)$:

$$
A_{0}=\left(\begin{array}{ccc}
e & 1 & 0 \\
b & c & d \\
0 & 1 & a
\end{array}\right)
$$

If $a_{Y} \geq 2$, then $\operatorname{rank}\left(A_{0}\right) \leq 1$ by Lemma 2.2(1). This implies $e=b=d=a=0$. Then $f(x)=x\left(x^{2}+c^{1 / 3} x+1\right)^{3}$ does not have distinct roots which contradicts the hypothesis that Y is smooth. Thus $a_{Y} \leq 1$.

By Lemma 3.2, every point of the two-dimensional space $\mathcal{H}_{3} \cap V_{3,0}$ has a-number 1 when $p=3$. In fact, we can say more about the geometry of $\mathcal{H}_{3} \cap V_{3,0}$ when $p=3$. The next result gives necessary and sufficient conditions on the five parameters a, \ldots, e for Y to have p-rank 0 .

Lemma 3.3. Suppose Y is a smooth hyperelliptic curve with affine equation $y^{2}=$ $f(x)$ where $f(x)=x^{7}+a x^{6}+b x^{5}+c x^{4}+d x^{3}+e x^{2}+x$. Then Y has p-rank 0 in exactly the following cases:
(1) $d=0, a=b+c^{4}=e+c^{3}=0$;
(2) $d \neq 0, b^{3}+c^{12}+c^{9} a+d^{3}+a^{4}=d^{6} e+d^{6} c^{3}+a^{9}=d^{9} c^{3}+d^{9} a+d^{3} a^{9}+a^{13}=0$.

Proof. By Lemma 2.2(2), Y has p-rank 0 exactly when $M=A_{0} A_{1} A_{2}$ is the zero matrix. One computes that the matrix M has entries $m_{i j}$ where:

$$
\begin{aligned}
& m_{11}=e^{13}+b^{3} e^{9}+b^{9} e+b^{9} c^{3} \\
& m_{12}=e^{4}+b^{3}+c^{9} e+c^{12}+d^{3} ; \\
& m_{13}=d^{9} e+d^{9} c^{3}+d^{3} a^{9} ; \\
& m_{21}=e^{12} b+e^{9} c b^{3}+b^{10}+b^{9} c^{4}+b^{9} d ; \\
& m_{22}=b e^{3}+c b^{3}+c^{9} b+c^{13}+c^{9} d+c d^{3}+d a^{3} ; \\
& m_{23}=d^{9} b+d^{9} c^{4}+d^{10}+a^{9} c d^{3}+a^{12} d ; \\
& m_{31}=b^{3} e^{9}+b^{9} c^{3}+b^{9} a \\
& m_{32}=b^{3}+c^{12}+c^{9} a+d^{3}+a^{4} ; \\
& m_{33}=d^{9} c^{3}+d^{9} a+d^{3} a^{9}+a^{13} .
\end{aligned}
$$

Let $I \subset k[a, b, c, d, e]$ be the ideal $I=\left(m_{i j} \mid 1 \leq i, j \leq 3\right)$. Consider a point $w=(a, b, c, d, e) \in \mathbb{A}_{k}^{5}$. Let $V(I) \subset \mathbb{A}_{k}^{5}$ be the variety of I. Then Y has p-rank 0 if and only if $w \in V(I)$.
(1) Suppose $w \in V(I)$ and $d=0$. Then equation m_{33} implies $a=0$. Then equation m_{32} implies $b+c^{4}=0$. If $e=0$, then equation m_{11} implies $c=0$ and so $e+c^{3}=0$. (Note that $y^{2}=x^{7}+x$ is not smooth, so the case $e=0$ can be disregarded anyway.) If $e \neq 0$, then equation m_{12} implies $e+c^{3}=0$. Conversely, if $d=a=b+c^{4}=e+c^{3}=0$, then a computer calculation shows that $w \in V(I)$.
(2) Suppose $w \in V(I)$ and $d \neq 0$, then equation m_{13} implies $d^{6} e+d^{6} c^{3}+a^{9}=0$. Also equation m_{32} implies $b^{3}+c^{12}+c^{9} a+d^{3}+a^{4}=0$. Then equation m_{33} implies $d^{9} c^{3}+d^{9} a+d^{3} a^{9}+a^{13}=0$. Conversely, after solving for e, b, and then c, and substituting them into $m_{i j}$, a computer calculation shows that $w \in V(I)$.

Lemma 3.4. Let $I \subset k[a, b, c, d, e]$ be the ideal $I=\left(m_{i j} \mid 1 \leq i, j \leq 3\right)$ as above. Then $V(I)$ is irreducible with dimension two.

Proof. Suppose that $(a, b, c, d, e) \in V(I)$ with $d \neq 0$. Using the equations from Lemma 3.3(2), one can solve for b and e in terms of $a^{1 / 3}, c, d$, and then one can solve for c in terms of $a^{1 / 3}$ and d. Namely, $e=2 c^{3}+2 a^{9} / d^{6}$ and $b=2 c^{4}+2 c^{3} a^{1 / 3}+$ $2 d+2 a^{4 / 3}$. Also $c=2 a^{1 / 3}+2 a^{3} / d^{2}+2 a^{13 / 3} / d^{3}$. Thus there are formulae $b\left(a^{1 / 3}, d\right)$, $c\left(a^{1 / 3}, d\right), e\left(a^{1 / 3}, d\right)$ for b, c, e in terms of $a^{1 / 3}, d$.

Let $S=\operatorname{Spec}\left(k\left[a^{1 / 3}, d, d^{-1}\right]\right)$. Note that S is irreducible with dimension 2. Let $C \subset \mathbb{A}_{k}^{5}$ be the closed subspace of points (a, b, c, d, e) with $d=0$. Let $U=$ $\mathbb{A}^{5}-C$. The morphism $G\left(\left(a^{1 / 3}, d\right)\right)=\left(a, b\left(a^{1 / 3}, d\right), c\left(a^{1 / 3}, d\right), d, e\left(a^{1 / 3}, d\right)\right)$ yields an isomorphism $G: S \rightarrow V(I) \cap U$. Thus $V(I) \cap U$ is irreducible with dimension two.

It remains to show that $V(I) \cap C$ is in the boundary of $V(I) \cap U$. Let $W \subset$ $V(I) \cap U$ be the closed locus where $d^{2}+a^{2}=0$. Recall that if $w \in V(I)$ then $d^{6} e+d^{6} c^{3}+a^{9}=0$ and $\left(b+c^{4}\right)^{3}+c^{9} a+d^{3}+a^{4}=0$. If also $w \in W$, then $e+c^{3}+a^{3}=0$. When $a=d=0$, these relations imply that $e+c^{3}=b+c^{4}=0$. Thus every point of $V(I) \cap C$ is in the boundary of $V(I) \cap U$.

Proposition 3.5. When $p=3$, the moduli space $\mathcal{H}_{3} \cap V_{3,0}$ is irreducible.
Proof. Let $\Delta \subset \mathbb{A}_{k}^{5}$ be the closed subset of all (a, b, c, d, e) so that $f(x)$ has multiple roots. Let $U^{\prime}=\mathbb{A}_{k}^{5}-\Delta$. There is a morphism $\tau: U^{\prime} \rightarrow \mathcal{H}_{3}$ which is surjective (and finite-to-one) by Lemma 3.1. Then $\tau^{-1}\left(\mathcal{H}_{3} \cap V_{3,0}\right)=V(I) \cap U^{\prime}$. By Lemma 3.4, $V(I)$ is irreducible. Thus $\mathcal{H}_{3} \cap V_{3,0}$ is irreducible when $p=3$.
3.3. The case when $p=5$. In this section, suppose $p=5$. The computations of the previous section become more elaborate. We show that $\mathcal{H}_{3} \cap T_{3,2}$ has exactly one irreducible component of dimension two and that its generic point has p-rank 1. Using this, we show that the generic point of every irreducible component of $\mathcal{H}_{3} \cap V_{3,0}$ has a-number 1.

Lemma 3.6. If $p=5$, then $\mathcal{H}_{3} \cap T_{3,2}$ contains exactly one irreducible component of dimension 2 and the generic point of this component has a-number 2 and p-rank 1.

Proof. If $p=5$, the entries of A_{0} are given by some of the coefficients of $f(x)^{2}$:

$$
A_{0}=\left(\begin{array}{lll}
2 d+e^{2} & 2 e & 1 \\
2 e+2 a d+2 b c & 2+2 a e+c^{2}+2 b d & 2 c d+2 a+2 b e \\
1 & 2 a & 2 b+a^{2}
\end{array}\right)
$$

If Y has a-number at least 2 , then the rank of A_{0} is at most 1 . Thus the first two rows of A_{0} are a non-zero scalar multiple of the third row. This implies that $(a, b, c, d, e) \in V(J)$ where $J \subset k[a, b, c, d, e]$ is the ideal $\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ where:

$$
\begin{aligned}
& t_{1}=4 a d+2 a e^{2}+3 e \\
& t_{2}=4 b d+2 b e^{2}+2 a^{2} d+a^{2} e^{2}+4 \\
& t_{3}=2 a e+4 a^{2} d+4 a b c+3+4 c^{2}+3 b d \\
& t_{4}=2 b e+4 b a d+4 b^{2} c+2 a^{2} e+2 a^{3} d+2 a^{2} b c+3 c d+3 a
\end{aligned}
$$

By equation t_{1}, if $a=0$ then $e=0$. Then $b d=-1$ and $c=0$. Similarly, if $e=0$, then $a d=0$ and $b d=-1$, which gives $a=c=0$. In either case, this yields a component of $V(J)$ of dimension 1 .

Suppose $a e \neq 0$. Then equation t_{1} implies that $d=2 e^{2}+3 e / a$. After making this substitution, equation t_{2} implies that $b=2 a^{2}+3 a / e$. After making this substitution, equations t_{3} and t_{4} simplify as follows:

$$
\begin{gathered}
t_{3}^{\prime}=3 a^{3} c e+2 a^{2} c+4 c^{2} e \\
t_{4}^{\prime}=4 c a^{4} e+c a^{3}+c e^{2} a+4 c e^{3}
\end{gathered}
$$

If $c \neq 0$, then one can show that $c=3 a^{3}+2 a^{2} / e$. Also $c \neq 0$ implies $a e \neq 1$. Another computation then shows that there is a relation between a and e, namely $a^{3}=e^{3}$. Thus the intersection $V(J) \cap\{c \neq 0\}$ has dimension one, which yields a subset of $\mathcal{H}_{3} \cap T_{3,2}$ having dimension one.

Otherwise, if $c=0$, then $t_{3}^{\prime}=t_{4}^{\prime}=0$. In other words,

$$
V(J) \cap\{a e \neq 0, c=0\}=\left\{(a, b, 0, d, e) \mid b=2 a^{2}+3 a / e, d=2 e^{2}+3 e / a\right\}
$$

Thus there is a unique irreducible component of $V(J)$ having dimension two. As in the proof of Proposition 3.5, there is a surjective finite-to-one morphism $\tau: U^{\prime} \rightarrow$ \mathcal{H}_{3}. Then $\tau^{-1}\left(\mathcal{H}_{3} \cap T_{3,2}\right)=V(J) \cap U^{\prime}$. This yields a unique irreducible component η of $\mathcal{H}_{3} \cap T_{3,2}$ having dimension two.

We now find a point $w \in V(J)$ with $a e \neq 0$ and $c=0$ so that the corresponding curve Y_{w} is a smooth hyperelliptic curve of genus 3 with a-number 2 and p-rank 1 . Let $\gamma \in \mathbb{F}_{25}$ be a root of $x^{2}-2$. Consider the point $w=(\gamma, 4+3 \gamma, 0,2+4 \gamma, 1) \in V(J)$. One can compute that the discriminant of $f(x)=x^{7}+\gamma x^{6}+(4+3 \gamma) x^{5}+(2+$ $4 \gamma) x^{3}+x^{2}+x$ is 4 and so $f(x)$ has distinct roots. Thus Y_{w} is a smooth hyperelliptic curve of genus 3 . Also Y_{w} has a-number 2 since $w \in V(J)$. One can compute that

$$
A_{0}(w)=\left(\begin{array}{lll}
3 \gamma & 2 & 1 \\
4 \gamma+3 & 1+\gamma & 3+3 \gamma \\
1 & 2 \gamma & \gamma
\end{array}\right)
$$

Thus $M=A_{0} A_{1} A_{2}$ simplifies to:

$$
M(w)=\left(\begin{array}{lll}
2 \gamma & 3 & 4 \\
\gamma+2 & 4 \gamma+4 & 2 \gamma+2 \\
4 & 3 \gamma & 4 \gamma
\end{array}\right)
$$

Then $Y_{w} \in \eta$ has p-rank 1 since $\operatorname{rank}(M(w))=1$. The p-rank can only decrease under specialization. Thus the generic point of η has p-rank 1 and a-number 2 .
3.4. Complexity Analysis. As the characteristic increases, the sort of analysis on the a-number and p-rank performed in previous sections becomes prohibitively complicated. To see this, let $f(x)=a_{7} x^{7}+a_{6} x^{6}+a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$. Then every coefficient of $g(x)=f(x)^{(p-1) / 2}$ is homogeneous of degree $(p-1) / 2$ when considered as a polynomial in $k\left[a_{0}, \ldots, a_{7}\right]$.

The coefficient of x^{p-1} in $g(x)$ contains a monomial $a_{2}^{(p-1) / 2}$. The degree in a_{2} of any other coefficient of $g(x)$ is strictly less than $(p-1) / 2$. Thus the entry a_{11} of $A_{0}=\left(a_{i j}\right)$ contains a monomial $a_{2}^{(p-1) / 2}$, and all other entries of this matrix have smaller degree as polynomials in a_{2}. The non-homogeneous version of this statement is that the highest power of e appearing in the Cartier-Manin matrix for the curve $y^{2}=x^{7}+a x^{6}+b x^{5}+c x^{4}+d x^{3}+e x^{2}+x$ appears in the monomial $e^{(p-1) / 2}$ in the entry a_{11}.

This, in turn, implies that a_{11}^{p} contains a monomial $e^{p(p-1) / 2}$, and this is the highest degree to which e appears in the entries of the matrix $A_{1}=\left(a_{i j}^{p}\right)$. Similarly, $a_{11}^{p^{2}}$ contains $e^{p^{2}(p-1) / 2}$, and the degree of e is smaller in all the other entries of $A_{2}=\left(a_{i j}^{p^{2}}\right)$. Therefore, $e^{\left(1+p+p^{2}\right)(p-1) / 2}=e^{\left(p^{3}-1\right) / 2}$ is a monomial in the entry m_{11} of the product $\left(m_{i j}\right):=A_{0} A_{1} A_{2}$. A similar analysis can be performed for a_{4} (or c) in the entry $m_{2,2}$ and for a_{6} (or a) in the entry $m_{3,3}$.

This discussion demonstrates that the entries of the matrix A_{0}, whose rank is analyzed in connection with the a-number, contain monomials of degree $(p-1) / 2$ in a, c, and e. The entries of the matrix $A_{0} A_{1} A_{2}$, examined for p-rank, have the same variables appearing with degrees $\left(p^{3}-1\right) / 2$. In particular, the locus $\mathcal{H}_{3} \cap V_{3,0}$ corresponds to the vanishing of nine equations in five variables, at least three of which have degree $\left(p^{3}-1\right) / 2$ in some variable. The difficulty of analyzing these two invariants grows accordingly.

4. Application: hyperelliptic curves with p-Rank $g-3$ and a-Number 1

Let $g \geq 3$. Suppose X is a curve of genus g with p-rank $g-3$. By Remark 2.3, there are three possibilities for the a-number of X, namely $a_{X} \in\{1,2,3\}$.

Remark 4.1. If X has genus g and p-rank $g-3$, there are four possibilities for the isomorphism class of the group scheme $\operatorname{Jac}(X)[p]$. Of these, there is a unique group scheme with p-rank $g-3$ and a-number 1 . It is of the form $\left(\mathbb{Z} / p \oplus \mu_{p}\right)^{g-3} \oplus I_{3,1}$ where $I_{3,1}$ is the unique group scheme of rank 6 , p-rank 0 , and a-number 1 . The covariant Dieudonné module for $I_{3,1}$ is $E / E\left(F^{3}-V^{3}\right)$ where $E=k[F, V]$ is a non-commutative ring generated by Frobenius and Verschiebung [9, Lemma 3.1].

Theorem 4.2. Suppose $g \geq 3$. Let $p=3$ or $p=5$. Then the generic point of every irreducible component of $\mathcal{H}_{g} \cap V_{g, g-3}$ has a-number 1.
Proof. The proof is by induction on g with base case $g=3$. For $p=3, \mathcal{H}_{3} \cap T_{3,2}=\emptyset$ by Lemma 3.2. Thus every point of $\mathcal{H}_{3} \cap V_{3,0}$ has a-number 1 . For $p=5$, there is a unique irreducible component η of $\mathcal{H}_{3} \cap T_{3,2}$ with dimension 2 and its generic point has p-rank 1 by Lemma 3.6. Every irreducible component ξ of $\mathcal{H}_{3} \cap V_{3,0}$ has dimension 2 and has generic point with p-rank 0 . Thus $\xi \subsetneq T_{3,2}$. So the generic point of every irreducible component of $\mathcal{H}_{3} \cap V_{3,0}$ has a-number 1 .

For $g \geq 4$, the result follows immediately from [8, Prop. 3.6]. Here is the basic idea of the inductive proof. The compactification $\overline{\mathcal{M}}_{g}$ of \mathcal{M}_{g} contains a boundary component Δ_{0} whose generic point is a singular curve Z which self-intersects in an ordinary double point. The normalization \tilde{Z} of Z is a smooth curve of genus $g-1$. The p-rank of \tilde{Z} is $\sigma_{\tilde{Z}}=\sigma_{Z}-1$. One proves that the closure in $\overline{\mathcal{M}}_{g}$ of each component of $\mathcal{H}_{g} \cap V_{g, g-3}$ intersects Δ_{0}. Then the proof relies on a dimension count for components of Δ_{0} that satisfy certain conditions on the p-rank and a number.

Corollary 4.3. Suppose $g \geq 3$. Let $p=3$ or $p=5$. There is a family of dimension $2 g-4$ consisting of smooth hyperelliptic curves of genus g with p-rank $g-3$ and a-number 1 .

Proof. By Theorem 4.2, the locus of smooth hyperelliptic curves of genus g with p-rank $g-3$ and a-number 1 is open (and dense) in $\mathcal{H}_{g} \cap V_{g, g-3}$. The result follows since $\operatorname{dim}\left(\mathcal{H}_{g} \cap V_{g, g-3}\right)=2 g-4$ by [3, Thm. 1].

Remark 4.4. Here are two strategies for extending Theorem 4.2 to larger characteristic.
(1) By $[7,5.12(4)]$, for all $p \geq 3$, there exists a hyperelliptic curve of genus 3 with a-number 1. The first strategy would be to see if $\mathcal{H}_{3} \cap V_{3,0}$ is irreducible for all $p \geq 3$. If so, the generic point of $\mathcal{H}_{3} \cap V_{3,0}$ would have a-number 1 and the result would follow from [8, Prop. 3.6].
(2) By [3, Cor. 4], for all $p \geq 5$, there exists a hyperelliptic curve of genus 3 with a-number 2 and p-rank 1 . The second strategy would be to prove that every irreducible component of $\mathcal{H}_{3} \cap T_{g, 2}$ of dimension two contains a point with p-rank 1. Then the generic point of every irreducible component of $\mathcal{H}_{3} \cap V_{3,0}$ would have a-number 1 and the result would again follow from [8, Prop. 3.6].

References

[1] A. Elkin. The rank of the Cartier operator on cyclic covers of the projective line. to appear in J. Algebra, mathAG/0708.0431.
[2] C. Faber and G. van der Geer. Complete subvarieties of moduli spaces and the Prym map. J. Reine Angew. Math., 573:117-137, 2004. arXiv:math.AG/0305334.
[3] D. Glass and R. Pries. Hyperelliptic curves with prescribed p-torsion. Manuscripta Math., 117(3):299-317, 2005. arXiv:math.NT/0401008.
[4] E. Goren. Lectures on Hilbert modular varieties and modular forms, volume 14 of CRM Monograph Series. American Mathematical Society, Providence, RI, 2002. With the assistance of Marc-Hubert Nicole.
[5] E. Nart and D. Sadornil. Hyperelliptic curves of genus three over finite fields of even characteristic. Finite Fields Appl., 10(2):198-220, 2004.
[6] P. Norman and F. Oort. Moduli of abelian varieties. Ann. of Math. (2), 112(3):413-439, 1980.
[7] F. Oort. Hyperelliptic supersingular curves. In Arithmetic algebraic geometry (Texel, 1989), volume 89 of Progr. Math., pages 247-284. Birkhäuser Boston, Boston, MA, 1991.
[8] R. Pries. The p-torsion of curves with large p-rank. to appear in International Journal of Number Theory, math.AG/0601596.
[9] R. Pries. A short guide to p-torsion of abelian varieties in characteristic p. to appear in Computational Arithmetic Geometry, CONM, AMS.
[10] R. Re. The rank of the Cartier operator and linear systems on curves. J. Algebra, 236(1):8092, 2001.
[11] N. Yui. On the Jacobian varieties of hyperelliptic curves over fields of characteristic $p>2 . J$. Algebra, 52(2):378-410, 1978.

Arsen Elkin,
Colorado State University,
Fort Collins, CO, 80521,
elkin@math.colostate.edu.
Rachel Pries,
Colorado State University,
Fort Collins, CO, 80521,
pries@math.colostate.edu.

