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SAMPLE EXTREMES OF Lp-NORM ASYMPTOTICALLY
SPHERICAL DISTRIBUTIONS

ENKELEJD HASHORVA

Abstract. In this paper we deal with the asymptotic behaviour of sample

maxima of Lp-norm asymptotically spherical random vectors. If the distri-

bution function of the associated random radius of such random vectors is in
the Gumbel of the Weibull max-domain of attraction we show that the nor-

malised sample maxima has asymptotic independent components converging

in distribution to a random vector with unit Gumbel or Weibull components.
When the associated random radius has distribution function in the Fréchet

max-domain we show that the sample maxima has asymptotic dependent com-
ponents.

1. Introduction

Let X = (X1, . . . , Xd)>, d ≥ 2, be a random vector in Rd, d ≥ 2, defined by

X = RUd,(1)

where R is an almost surely positive random variable independent of the random
vector Ud = (U1, . . . , Ud)> (> stands here for the transpose sign).
Suppose that for some p ∈ (0,∞) we have almost surely

d∑
i=1

|Ui| = 1

and the random vector (U1, . . . , Ud−1)> possesses probability density function

p(u1, . . . , ud−1) =
pd−1Γ(d/p)
2d−1Γ(1/p)

(
1−

d−1∑
i=1

|ui|p
)(1−p)/p

, i ≤ d− 1,

defined for any ui ∈ [−1, 1], i ≤ d such that
∑d−1

i=1 |ui|p < 1, where Γ(·) denotes the
Gamma function.
Following Gupta and Song (1997) we shall call X with stochastic representation
(1) a Lp-norm spherical random vector. In the case p = 2 the random vector X
reduces to a spherical symmetrical (L2-norm) random vector with the distribution
function invariant with respect to orthogonal transformations in Rd.
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Gupta and Song (1997), Szab lowski (1998) derive the basic distributional prop-
erties of Lp-norm spherical random vectors. The asymptotic properties of this class
of random vectors have not been investigated so far, in particular in the literature
no result is available for the asymptotic behaviour of sample maxima, when con-
sidering samples with underling Lp-norm spherical distributions.

As it is the case for the distributional properties, for p = 2 several asymptotic
properties of spherical random vectors are available with some early works going
back to Carnal (1970), Gale (1980), Berman (1982) among several others.
In this paper we show that the basic asymptotic properties of L2-norm spherical
random vectors extend (with minor adjustments) naturally to the general Lp-norm.
With motivation from Hashorva (2005) we introduce the class of Lp-norm asymp-
totically spherical random vectors. We shall show that this new class of random
vectors is a natural generalisation of the Lp-norm spherical random vectors with
respect to the asymptotic dependence and asymptotic behaviour of sample maxima;
thus generalising the results of the aforementioned paper for the L2-norm setup.

In the next section we shall introduce some notation and provide details on
Lp-norm spherical random vectors and investigate their asymptotic dependence.

We then introduce Lp-norm asymptotically spherical random vectors and discuss
the main asymptotic properties of this novel class. The proofs of all the results as
well as some related results are relegated to Section 5.

2. Preliminaries

We start with presenting the notation and the basic distributional properties of
Lp-norm spherical random vectors. For any vector x = (x1, . . . , xd)> ∈ Rd, d ≥ 2
set xI := (xi, i ∈ I)> with I being a non-empty subset of {1, . . . , d}. We shall write
x>I instead of (xI)>. Let y = (y1, . . . , yd)> be another vector in Rd. We define

x + y := (x1 + y1, . . . , xd + yd),

x > y, if xi > yi, ∀ i = 1, . . . , d,

x ≥ y, if xi ≥ yi, ∀ i = 1, . . . , d,

x 6= y, if for some i ≤ d xi 6= yi,

ax := (a1x1, . . . , adxd)>, cx := (cx1, . . . , cxd)>, a ∈ Rd, c ∈ R,

0 := (0, . . . , 0)> ∈ Rd, 1 := (1, . . . , 1)> ∈ Rd,

‖xI‖p :=
(∑

i∈I

|xi|p
)1/p

, Sk−1
p := {x ∈ Rk : ‖x‖p = 1}, k ≥ 1, p > 0.

Note that ‖·‖p is only for p ∈ [1,∞) a norm. We still refer to Lp-norm spherical
random vectors even when p ∈ (0, 1).
We shall write Beta(a, b) for the distribution function of a Beta random variable
with positive parameters a and b. If Z is a random variable with distribution
function G we shall use alternatively the notation Z ∼ G, and denote by G−1 the
generalised inverse of G.

Let p be a given positive constant, and let Uk, k ≥ 2, denote a Lp-norm uniformly
distributed random vector on Sk−1

p .
Consider X as in (1) with associated random radius R > 0 (almost surely) with the
distribution function F independent of the random vector Ud = (U1, . . . , Ud)>. For
p = 2 Cambanis et al. (1981) show that for any I, J two non-empty disjoint index
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sets such that I ∪ J = {1, . . . , d} the random vector X possesses the stochastic
representation

XI
d= RWm,dUm, and XJ

d= R(1−W 2
m,d)1/2Ud−m,

where Um,Ud−m,m := |I| are two uniformly distributed random vectors on Sm−1
2

and Sd−m−1
2 , respectively, and

W 2
m,d ∼ Beta(m/2, (d−m)/2), Wm,d > 0,

where d= stands for equality of distribution functions of random vectors.
In Gupta and Song (1997) the above stochastic representation is generalised to the
Lp-norm spherical random vectors. Referring to Theorem 3.1 therein we have for
any p > 0 and X defined be (1)

XI
d= RWm,d,pUm, and XJ

d= R(1−W p
m,d,p)1/pUd−m,(2)

with Um,Ud−m two independent Lp-norm uniformly distributed random vectors.
Further, R,Wm,d,p,Um,Ud−m are mutually independent, and

W p
m,d,p ∼ Beta(m/p, (d−m)/p), Wm,d,p > 0.

As shown initially by Berman (1992) the stochastic representation (2) is basic for
investigating the asymptotic behaviour of L2-norm spherical random vectors.
Utilising Berman’s results and the ideas Hashorva (2005) discusses the asymptotic
dependence and the asymptotic behaviour of sample extremes of asymptotically
spherical and elliptical random vectors.
Next we shall consider the asymptotic dependence of Lp-norm spherical random
vectors.
In view of the stochastic representation (2) we simply need to investigate the as-
ymptotic dependence of a bivariate Lp-norm spherical random vector.
Let therefore p > 0 be fixed and let X = (X1, X2)> be a Lp-norm bivariate spherical
random vector. By (2) both X1, X2 have the same distribution and are symmetric
about 0. Denote by F the distribution function of the associated random radius R.
The simple (well-known) measure of asymptotic dependence between X1, X2 is the
limit (if it exists)

κ(X1, X2) := lim
t↑ω

P {X1 > t,X2 > t}
P {X1 > t}

≥ 0,

with ω := sup{x : F (x) < 1} the upper endpoint of F . If κ(X1, X2) = 0 then the
joint tail probability diminishes faster than the marginal tail probability. For this
case we say that X1 and X2 are asymptotically independent.

If ω is finite, then κ(X1, X2) = 0 since both X1, X2 cannot approach ω simulta-
neously. We discuss in the following therefore only the case ω = ∞.
Let a ∈ (0,∞) and set cp

1 := inf{|x1|p + |x2|p : x1 ≥ 1, x2 ≥ a}. Clearly, c1 exists
and c1 > 1. For any t > 0, c0 ∈ (0, 1) we have

P {X1 > t,X2 > at}
P {X1 > t}

≤ P {|X1|p + |X2|p ≥ cp
1t

p}
P {X1 > t}

=
2P {R ≥ c1t}
P {|X1| > t}

≤ 2P {R ≥ c1t}
P {RW1,2,p > t,W1,2,p < c0}

≤ 2P {R ≥ c1t}
P {R > t}P {W1,2,p < c0}

.(3)
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Choosing a c0 ∈ (c−1
1 , 1) we obtain thus by the above upper bound

κ(X1, X2/a) = lim
t→∞

P {X1 > t,X2 > at}
P {X1 > t}

= 0,(4)

provided that

lim
t→∞

1− F (Kt)
1− F (t)

= 0(5)

holds for any K > 1. (5) means that 1 − F is a rapidly varying function. See de
Haan (1970) or Resnick (1987) for the main properties of rapidly varying functions.
In particular (5) holds if F is in the max-domain of attraction of the unit Gumbel
distribution function Λ(x) = exp(− exp(−x)), x ∈ R. A necessary and sufficient
condition for F to be in the max-domain of attraction of Λ is the existence of a
positive scaling function w such that

lim
t↑ω

1− F (t + x/w(t))
1− F (t)

= exp(−x), ∀x ≥ 0.(6)

See Leadbetter et al. (1983), Galambos (1987), Resnick (1987), Reiss (1989), Berman
(1992), or Falk et al. (2004) for further details.
It follows from the univariate extreme value theory that the two other possible
max-domain of attractions for F are the Weibull and the Fréchet ones. For the first
case we have for some α > 0

lim
t→∞

F t(ω + a(t)x) = exp(−|x|α) =: Ψα(x), ∀x ∈ (−∞, 0),(7)

with a(t) := ω − F−1(1− 1/t), t > 1, whereas for the second case

lim
t→∞

F t(a(t)x) = exp(−x−α) =: Φα(x), ∀x ∈ (0,∞)(8)

holds with a(t) := F−1(1− 1/t), t > 1.
If F is in the Weibull max-domain of attraction, then necessarily ω < ∞, conse-
quently (4) holds for any p positive.
Thus in both Gumbel and Weibull cases asymptotic independence of the compo-
nents is observed for Lp-norm spherical random vectors. Berman (1992) shows
that for F in the Fréchet max-domain of attraction κ(X1, X2/a) is positive for any
a > 0. It is well-known (see e.g. de Haan (1970) or Kotz and Nadarajah (2005))
that (8) is equivalent with the fact that R is regularly varying with index α > 0,
i.e.

lim
t→∞

P {R > Kt}
P {R > t}

= K−α, ∀K > 0.

Berman (1992) shows further for the case p = 2 (see Theorem 12.3.2 therein and
Theorem 5.1 below) that also |X1| is regularly varying with positive index α > 0.
In Hashorva (2006) (see also Hashorva (2007b)) the converse is proved, i.e. if |X1|
is regularly varying then the associated random radius R is also regularly varying
with the same index as |X1|.
We show in the next section that a similar result holds for Lp-norm spherical random
vectors with p > 0 a given constant. In particular we have

κ(X1, X2/a) > 0, ∀a ∈ (0,∞)

if X1 or R is regularly varying with positive index α.
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3. Asymptotics of Sample Maxima

Let X be a Lp-norm spherical random vector in Rd, d ≥ 2 as in (1) and let further
X1, . . . ,Xn, n ≥ 1 be independent random vectors in Rd with the same distribution
function G as X. Denote by F the distribution function of the associated random
radius R of X, and define the component-wise sample maxima by

Mn := ( max
1≤j≤n

Xj1, . . . , max
1≤j≤n

Xjd)>, n ≥ 1.

Assuming that F is in the max-domain of attraction of a univariate extreme value
distribution function H (abbreviated as F ∈ MDA(H)) Hashorva (2005) derives
(when p = 2) the convergence in distribution

Mn − b(n)1
a(n)

d→ Z, n →∞,(9)

where the random vector Z = (Z1, . . . , Zd)> has distribution function Q which is
a product distribution if H = Λ or H = Ψα, α > 0.
If H = Φα, α > 0, then Z has dependent components with distribution function
Φα. Both constants a(n) > 0, b(n), n ∈ N are defined in terms of the distribution
function of X1. The convergence in the distribution in (9) is equivalent with

lim
n→∞

Gn(a(n)x + b(n)1) = Q(x), ∀x ∈ Rd.(10)

As in the univariate setup abbreviate (10) by G ∈ MDA(Q). Note in passing that
(10) implies Gi ∈ MDA(Qi), 1 ≤ i ≤ d with Gi, Qi the marginal distributions of G
and Q, respectively.

In the next two theorems we show that the asymptotic behaviour of the sample
maxima is the same (with respect to the limiting distribution Q) for any p > 0. We
discuss first the case F is in the Gumbel or the Weibull max-domain of attractions.

Theorem 1. Let X be a Lp-norm spherical random vector in Rd, d ≥ 2 with
distribution function G defined in (1) with R > 0 almost surely being independent
of Ud. Let F be the distribution function of R with the upper endpoint ω ∈ (0,∞].
i) Assume that F ∈ MDA(Λ) with positive scaling function w. Then (10) holds
where Z has independent components with unit Gumbel distribution and b(n) :=
G−1

1 (1− 1/n), a(n) := 1/w(b(n)), n > 1.
ii) Suppose that ω = 1 and further F ∈ MDA(Ψα), α > 0 holds. Then (10) holds
with a(n) := 1 − G−1

1 (1 − 1/n), n > 1 and Zi, 1 ≤ i ≤ d independent random
variables such that Zi ∼ Ψα+(d−1)/p.

Several examples may illustrate the applicability of Theorem 1.

Example 1. [Lp-norm Kotz Type I] Let X = (X1, . . . , Xd)> be a random vector
in Rd, d ≥ 2, with density function given by

q(x) :=
pdΓ(d/p)r(d/p+N)/ss

2dΓd(1/p)Γ((d/p + N)/s)
‖x‖pN

p exp(−r‖x‖ps
p ), x ∈ Rd(11)

and constants p, r, s > 0, N ∈ R : d + pN > 0. We refer to X as Lp-norm Kotz
Type I random vector. It has stochastic representation (1) where the associated
random radius R possesses the density function

f(t) =
psr(d/p+N)/s

Γ((d/p + N)/s)
td+pN−1 exp(−rtps), t ∈ (0,∞).
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If s = 1, N = 0, r > 0, then X possesses a p-generalised Gaussian distribution (see
Gordon and Kotz (1973)). It now follows easily that the distribution function F of
the density f is in the Gumbel max-domain of attraction with the scaling function

w(u) = (1 + o(1))rpsups−1, u →∞.

Next, if Xn, n ≥ 1 are independent with density function q given in (11), then
(9) follows implying further that the sample maxima has asymptotic independent
components.

Example 2. [Lp-norm Kotz Type III] We call a random vector X in Rd, d ≥ 2 a Lp-
norm Kotz Type III spherical random vector if it has stochastic representation (1)
where the associated random radius R > 0 has asymptotic tail behaviour (u →∞)

P {R > u} = (1 + o(1))KuN exp(−ruδ), K > 0, δ > 0, N ∈ R.(12)

It now easily follows that the distribution function F of R is in the Gumbel max-
domain of attraction with the positive scaling function

w(u) = (1 + o(1))rδuδ−1, u →∞.

The subvectors of X are all Lp-norm Kotz Type III spherical random vectors. This
property is not shared by Lp-norm Kotz Type I spherical random vectors.
In view of Theorem 1 the random vector X has asymptotic independent compo-
nents, and the maxima of a sample of Lp-norm Kotz Type III spherical random vec-
tors has asymptotic independent components with distribution function attracted
by a product distribution with Gumbel marginals.

Example 3. [Lp-norm Pearson Type II] The random vector X in Rd, d ≥ 2 has
density function (see Example 2.3 of Gupta and Song (1997))

q(x) :=
pdΓ(d/p + α)

2dΓd(1/p)Γ(α)

(
1− ‖x‖p

p

)α−1

, x ∈ Rd : ‖x‖p < 1, α > 0.

X is Lp-norm spherically distributed with random radius R with density function

f(t) =
pΓ(d/p + α)
Γ(d/p)Γ(α)

td−1(1− tp)α−1, t ∈ (0, 1).

It follows that the associated random radius R has the distribution function in
the max-domain of attraction of the Weibull distribution Ψα. Hence by the above
theorem the distribution function of X is in the max-domain of attraction of a
product distribution with marginal distributions Ψα+(d−1)/p.

Next, we deal with the case where F is in Fréchet max-domain of attraction.
In Hashorva (2005) (see also Hashorva (2007b)) it is shown (considering only the
case p = 2) that R has distribution function F ∈ MDA(Φα), α > 0 iff X1 has
distribution function in the max-domain of attraction of Φα.
Further, it is proved therein that F ∈ MDA(Φα) implies that X is a regularly
varying random vector with index α. Regular variation of random vectors is in-
vestigated in details in many recent contributions, see e.g. Basrak (2002), Mikosch
(2005). We use the following definitions of regular variation of random vectors.

Definition 1. The random vector X = (X1, . . . , Xd)>, d ≥ 1 is regularly varying
with index α > 0 if there exists a positive sequence an → ∞ as n → ∞ and a
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positive measure µ homogeneous of order α such that the vague convergence in
[−∞,∞]d \ {0}

nP {X/an ∈ ·}
v→ µ(·), n →∞(13)

holds.

For X a spherical random vector (with respect to L2-norm) in Rd, d ≥ 2 Hashorva
(2006) shows that if X1 is regularly varying with index α then X is regularly varying
with the same index α.

We generalise the aforementioned results for the case p > 0 (and complete the
proof of our previous result). The asymptotic behaviour of the sample maxima is
derived in Corollary 3.

Theorem 2. Let X be as in Theorem 1, and let Ri,p := (
∑i

j=1|Xj |p)1/p, 1 ≤ i ≤ d
be the i-th associated random radius of X. Then the following statements are
equivalent:
i) Rd,p is regularly varying with index α > 0.
ii) X1 is regularly varying with index α > 0.
iii) For any i = 1, . . . , d the random radius Ri,p is regularly varying with positive
index α. Furthermore

P {Ri,p > u} = (1 + o(1))Ci,d,α,pP {Rd,p > u}, u →∞(14)

holds for any i < d where

Ci,d,α,p := 2
Γ(d/p)Γ((i + α)/p)
Γ(i/p)Γ((d + α)/p)

∈ (0,∞).(15)

iv) For any I ⊂ {1, . . . , d} with 1 ≤ |I| = k and any Borel set B away from the
origin of Rk

lim
u→∞

P {(X + µ)I/u ∈ B}
P {X1 > u}

= C1,k,α,p

∫ ∞

0

P {rUk ∈ B} d(r−α)(16)

holds for any µ ∈ Rd.
v) X is regularly varying with index α > 0.

We thus immediately obtain the corollary:

Corollary 3. Let X,Ud, d ≥ 2 be as in Theorem 1 with distribution function
G. Assume that R or X1 is regularly varying with positive index α. Then G ∈
MDA(Qd,α,p) with Qd,α,p a max-stable distribution function on (0,∞)d defined for
any x > 0 by

Qd,α,p(x) := exp
(
−C1,d,α,p

∫ ∞

0

P {rUd ∈ Rd \ ×d
i=1(−∞, xi]} d(r−α)

)
.(17)

The marginal distributions of Qd,α,p are identical to Φα.
Conversely, if G ∈ MDA(Qd,α,p) where Qd,α,p has marginal distributions identical
to Φα, α > 0, then both X1 and R1 are regularly varying with index α.

(17) implies that if Y is a random vector with distribution function Qd,α,p for
some d ≥ 2 and α, p positive constants, then the subvector XI where I has k ≥ 1
elements and I ⊂ {1, . . . , d} has distribution function Qk,α,p which is max-stable.
Furthermore, Qk,α,p is not a product distribution for any k ≥ 2.

We present next an illustrating example:
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Example 4. [Lp-norm Pearson Type VII] Define X a Lp-norm spherically dis-
tributed random vector in Rd, d ≥ 2 as in Example 2.4 of Gupta and Song (1997)
with density function given for any x ∈ Rd by

q(x) :=
pdΓ(N)

2dΓd(1/p)Γ(N − n/p)
s−d/p

(
1 + ‖x‖p

p/s
)−N

, s > 0, N > d/p.

If N = (d + m)/2 then X has a Lp-norm t-distribution (see Example 2.5 of Gupta
and Song (1997)). The associated random radius R has density function

f(t) =
pΓ(N)

Γ(d/p)Γ(N − d/p)
s−d/ptd−1

(
1 + tp/s

)−N

, t ∈ (0,∞).

In view of Karamata’s Theorem (see e.g. Resnick (1987)) the random variable R
is regularly varying with index α := pN − d > 0. Consequently the marginals
Xi, 1 ≤ i ≤ d are regularly varying with index α. Furthermore, X is a regularly
varying random vector with positive index α. The corresponding measure can be
easily calculated.

Example 5. [Lp-norm Kotz Type II] We say that a random vector X in Rd, d ≥ 2,
has Lp-norm Kotz Type II distribution if its density function is given by

q(x) :=
pdΓ(d/p)rd/p+Ns

2dΓd(1/p)Γ((d/p + N)/s)
‖x‖pN

p exp(−r‖x‖ps
p ), x ∈ Rd,(18)

with constants p > 0, r > 0, s < 0, d/p + N < 0. Kotz (1975) introduces X with
density function as above in the case p = 2. Basic properties of AX with A ∈ Rd×d

a non-singular matrix are discussed in Kotz (2004). It can easily be shown that X
has stochastic representation (1) with the random radius R which has distribution
function in the Fréchet max-domain of attraction. Consequently, Theorem 2 implies
that the components of X are asymptotically dependent and the sample maxima
of Kotz Type II random vectors converges in the distribution (after normalisation)
to a random vector with dependent Fréchet marginal components.

4. Lp-norm Asymptotically Spherical Random Vectors

L2-norm asymptotically spherical random vectors are introduced in Hashorva
(2005). The crucial asymptotic property of such vectors is that the asymptotic
behaviour of the sample extremes can be defined by the asymptotic behaviour of
the associated random radius Ri,2, i ≤ d. In this section we introduce the larger
class of Lp-norm asymptotically spherical random vectors and show that the as-
ymptotic properties of Lp-norm spherical random vectors still hold under such a
general setup.

Definition 2. [Lp-norm asymptotically spherical random vector] Let X be a ran-
dom vector in Rd, d ≥ 2 and let ω ∈ (0,∞] be the upper endpoint of the distribution
function of each component Xi, 1 ≤ i ≤ d. For any non-empty subset I ⊂ {1, . . . , d}
set RI,p := (

∑
i∈I |Xi|p)1/p, p > 0 and R := (

∑d
i=1|Xi|p)1/p. Assume that R > 0

almost surely. If additionally

lim
t↑ω

P {Xi > t}
P {|Xi| > t}

= ci ∈ (0, 1](19)
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and further for any non-empty index set I ⊂ {1, . . . , d}

lim
t↑ω

P {RWI,p > t}
P {RI,p > t}

= dI ∈ (0,∞),(20)

where W p
I,p ∼ Beta(δI , λI),WI,p > 0 being further independent of R, with δI , λI

positive, then we refer to X as a Lp-norm asymptotically spherical random vector.

In the following we consider for simplicity the case

dI = 1, ∀I ⊂ {1, . . . , d}.
Further we suppose that for two non-empty index sets I, J such that J ⊂ I ⊂
{1, . . . , d} we have δI ≥ δJ . For notational simplicity we shall write δi, λi when
I = {i}.

With the above restrictions we call X a Lp-norm asymptotically spherical ran-
dom vector with coefficients c, δI , λI , I ⊂ {1, . . . , d} where c = (c1, . . . , ck)> ∈ Rk,
or shortly a Lp-norm asymptotically spherical random vector.
If p = 2 an instance of L2-norm asymptotically spherical random vector is X a gen-
eralised symmetrised Dirichlet random vector introduced in Fang and Fang (1990).
The main asymptotic properties derived above for the Lp-norm spherical random
vectors can be extended for the more general case Lp-norm asymptotically spheri-
cal random vectors. Since both X1, X2 and the associated random radius R have
by definition the same upper endpoint ω, then κ(X1, X2) = 0 follows in the case
ω ∈ (0,∞). We discuss next the case ω = ∞ and R has a rapidly varying survival
function.

Theorem 4. Let X be a Lp-norm asymptotically spherical random vector in Rd, d ≥
2 with coefficients c, δI , λI , I ⊂ {1, . . . , d}. Let F be the distribution function of
R := (|X1|p + · · ·+ |Xd|p)1/p with the upper endpoint ω ∈ (0,∞].
i) If ω ∈ (0,∞) then κ(Xi, Xj) = 0, 1 ≤ i < j ≤ d.
ii) If ω = ∞ and F is rapidly varying then for any a > 0 we have κ(Xi, Xj/a) =
0, 1 ≤ i < j ≤ d.

Let X be a Lp-norm asymptotically spherical random vector with associated
random radius R. If the distribution function of R is in the max-domain of attrac-
tion of a univariate extreme value distribution, then Theorem 8 below implies that
the components of X have distribution function in the same max-domain of attrac-
tion. We show next that also the distribution function of X is in the max-domain
of attraction of a max-stable distribution function.

Theorem 5. Let X,Xn, n ≥ 1 be independent Lp-norm asymptotically spherical
random vectors in Rd, d ≥ 2 with coefficients c, δI , λI , I ⊂ {1, . . . , d} and distri-
bution function G. Denote by ω ∈ (0,∞] the upper endpoint of the distribution
function F of the associated random radius R > 0 of X.
i) Let Z be a d−dimensional random vector with independent unit Gumbel compo-
nents. If F ∈ MDA(Λ) with the scaling function w, then we have the convergence
in the distribution

Mn − b(n)
a(n)

d→ Z, n →∞,(21)

provided that λi = λ > 0, 1 ≤ i ≤ d if ω = ∞, where a(n), b(n) are defined by

bi(n) := G−1
i (1− 1/n), ai(n) := 1/w(bi(n)), 1 ≤ i ≤ d, n > 1.
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ii) Assume that ω = 1 and F ∈ MDA(Ψα), α > 0. Then we have

Mn − 1
a(n)

d→ Z, n →∞,(22)

where Zi, 1 ≤ i ≤ d are independent with Zi ∼ Ψα+λi
, and a(n) has components

ai(n) := 1−G−1
i (1− 1/n), n > 1, 1 ≤ i ≤ d.

We note in passing that the restriction λi = λ > 0 for all i ≤ d in the above
theorem might be redundant. This is the case for instance if X is a L2-norm
generalised symmetrised Dirichlet distribution.
We consider next the case that the associated random radius R is regularly varying.

Theorem 6. Let X be a Lp-norm asymptotically spherical random vector as in
Theorem 5. If the associated random radius R is regularly varying with positive
index α, then Xi, 1 ≤ i ≤ d,RI,p,∀I ⊂ {1, . . . , d} are regularly varying with index
α and furthermore

P {RI,p > u} = (1 + o(1))
Γ(δI + λI)Γ(α/p + δI)
Γ(δI)Γ(α/p + δI + λI)

P {R > u}(23)

holds as u →∞. Furthermore, if there exists a random vector U on Sd−1
p indepen-

dent of R such that X = RU , then we have for any Borel set B ⊂ Rd away from
the origin of Rd and for any vector µ ∈ Rd

lim
u→∞

P {(X + µ)/u ∈ B}
P {Xi > u}

= Ci

∫ ∞

0

P {rU ∈ B} d(r−α),(24)

where

Ci :=
Γ(δi)Γ(α/p + δi + λi)

ciΓ(δi + λi)Γ(α/p + λi)
∈ (0,∞).

Similarly as in Corollary 3 the distribution function G of X in the above theorem
is in the max-domain of attraction of max-stable distribution function with Fréchet
marginal distributions which is not a product distribution.

We conclude this section with two illustrating example.

Example 6. [L2-norm Kotz Type I generalised symmetrised Dirichlet] Let α be
a fixed vector in Rd, d ≥ 2 with positive components and let N, r, s be positive
constants. We refer to a random vector X in Rd as Kotz Type I generalised
symmetrised Dirichlet with parameters α ∈ (0,∞)d, N ∈ R, r > 0, s > 0 if it
possesses the density function

h(x) :=
r(N+

P
i≤d αi)/s

sΓ((N +
∑

i≤d αi)/s)
Γ(

∑
i≤d αi)∏k

i=1 Γ(αi)
‖x‖pN

p exp(−r‖x‖2s)
k∏

i=1

|xi|2αi−1

defined for all x ∈ Rd, d ≥ 2.
In view of the amalgamation property shown in Fang and Fang (1990) (see also
Hashorva et al. (2007b)) it follows that X is a L2-norm asymptotically spherical
random vector. The associated random radius R of X is almost surely positive
and moreover R2 is Gamma distributed with parameters

∑
i≤d αi and 1/2. Hence

the distribution function of X is in the max-domain of attraction of a product
distribution with marginal distributions Λ.
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Example 7. [Lp-norm Kotz Type III asymptotically spherical] Let X be a Lp-norm
asymptotically spherical random vector in Rd, d ≥ 2, with coefficients δI , λI , I ⊂
{1, . . . , d} and distribution function G. We say that X is a Lp-norm Kotz Type
III asymptotically spherical random vector if the associated random radius R has
asymptotic tail behaviour given by (12). In view of Example 2 and Theorem 5 G ∈
MDA(Q) with Q a product distribution with unit Gumbel marginal distributions.

5. Related Results and Proofs

The next lemma is presented in the published paper Hashorva et al. (2007)
referring to this paper. We give it here for reference purposes.

Lemma 7. Let X, Y be two independent positive random variables with Y p ∼
Gamma(a, λ), a, λ > 0, p > 0. If X is regularly varying with positive index γ, then
we have

lim
u→∞

P {XY > u}
P {Y > u}

=
Γ(a + γ/p)
λγ/pΓ(a)

∈ (0,∞).(25)

Conversely, if the product XY is regularly varying with index γ > 0, then X is
regularly varying with index γ and further (25) holds.

Proof of Lemma 7 By Breiman’s Lemma (see Breiman (1965)) we have

lim
u→∞

P {XY > u}
P {Y > u}

=
Γ(a + γ/p)
λγ/pΓ(a)

∈ (0,∞).

Since X is regularly varying then the first claim follows. We show next the con-
verse. Assume that XY is regularly varying with index γ > 0. Since XY =
(XpY p)1/p, p > 0 and the fact that Xp is regularly varying iff X is regularly vary-
ing it suffices to show the proof for the case p = 1. Next, suppose for simplicity
that p = 1, λ = 1. For any t > 0 we may write by the independence of X and Y

P {XY > t} = ta
∫ ∞

0

exp(−tv) dG(v),

where
G(s) :=

1
Γ(a)

∫ s

0

P {X > 1/x}xa−1 dx, s > 0.

The assumption XY is regularly varying with index γ > 0 means∫ ∞

0

exp(−tv) dG(v) = t−a−γL(1/t), t →∞,(26)

with L(x) such that limt→0 L(Kt)/L(t) = 1,∀K > 0.
In view of Karamata’s Tauberian Theorem (Feller (1966), Resnick (1987)) (26) is
equivalent with

G(t) =
1

Γ(a + γ + 1)
ta+γL(t), t ↓ 0,

or equivalently

G(1/t) =
1

Γ(a + γ + 1)
t−a−γL(1/t), t →∞.

Consequently∫ 1/t

0

P {X > 1/x}xa−1 dx =
Γ(a)

Γ(a + γ + 1)
t−a−γL(1/t), t →∞.
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Since P {X > x}x−a−1, x > 0 decreases monotonically in x for any a > 0 we obtain
applying the Monotone Density Theorem (Resnick (1987))

P {X > t}t−a−1 =
(a + γ + 1)Γ(a)

Γ(a + γ + 1)
t−a−γ−1L(1/t), t →∞,

thus the proof follows. �

Theorem 8. Let Y be a random variable with distribution function H which has
the upper endpoint ω ∈ (0,∞] and H(0) = 0. Let a, b, τ be positive constants and
let Za,b be a Beta distributed random variable with parameters a, b independent of
Y and set H(u) := 1−H(u), u > 0.
i) If H ∈ MDA(Λ) with positive scaling function w then we have as u ↑ ω

P {Y [1− Za,b]1/τ > u} = (1 + o(1))
Γ(a + b)

Γ(b)

(
τ

uw(u)

)a

H(u).(27)

ii) If H ∈ MDA(Φα), α > 0 then ω = ∞ and for u →∞

P {Y [1− Za,b]1/τ > u} = (1 + o(1))
Γ(a + b)Γ(b + α/τ)
Γ(b)Γ(a + b + α/τ)

H(u).(28)

iii) If H ∈ MDA(Ψα), α > 0 and ω = 1, then we have

P {Y [1− Za,b]1/τ > u} = (1 + o(1))
Γ(α + 1)Γ(a + b)
Γ(b)Γ(α + a + 1)

(τ(1− u))aH(u)(29)

as u →∞.

Proof. The proof can be established along the lines of the proof of Theorem 12.3.1,
Theorem 12.3.2 and Theorem 12.3.3 of Berman (1992). We give below the sketch
of a slightly different proof.
Let B(y, a, b), y ∈ [0, 1] denote the distribution function of Za,b and put

Hu(s) := H(u + s/w(u))/H(u), H(u) := 1−H(u), u ∈ R, s > 0.

Since Y > 0 is independent of Za,b we have for any u ∈ (0, ω)

P {Y (1− Za,b)1/τ > u}

=
∫ ω

0

[1−B((u/s)τ , b, a)] dH(s)

= H(u)
∫ w(u)[ω−u]

0

[1−B([1 + s/(uw(u))]−τ , b, a)] dHu(s).

The assumption H ∈ MDA(Λ) implies

lim
u↑ω

[Hu(t)−Hu(s)] = exp(−s)− exp(−t), ∀s, t ∈ R, s ≥ t,

and
lim
u↑ω

w(u)[ω − u] = ∞, lim
u↑ω

uw(u) = ∞.

Consequently

lim
u↑ω

(
uw(u)

τ

)a[
1−B([1 + s/(uw(u))]−τ , b, a)

]
=

Γ(a + b)
aΓ(a)Γ(b)

sa, ∀s ∈ (0,∞),

hence we obtain further

lim inf
u↑ω

(
uw(u)

τ

)a

P {Y (1− Za,b)1/τ > u} ≥ Γ(a + b)
aΓ(a)Γ(b)

∫ ∞

−∞
sa d(exp(−s)).
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The same upper bound can be shown for the lim sup of the left hand side above
using Lemma 4.3 of Hashorva (2006).
ii) Breiman’s Lemma implies as u →∞

P {Y (1− Za,b)1/τ > u} = (1 + o(1))H(u)
Γ(a + b)
Γ(a)Γ(b)

∫ 1

0

xα/τxb−1(1− x)a−1 dx

= (1 + o(1))H(u)
Γ(a + b)Γ(b + α/τ)
Γ(b)Γ(a + b + α/τ)

.

iii) Denote again by B(y, a, b), y ∈ (0, 1) the distribution function of Za,b and put

Bu(y) := τ−a
u B(yτu, a, b), y ∈ [0, 1], τu := τ(1− u).

We may write for any u ∈ (0, 1)

P {Y (1− Za,b)1/τ > u} = τa
uH(u)

∫ 1−uτ

0

H(u(1− yτu)−1/τ )
H(u)

dBu(y).

Since for any y ∈ (0, 1)

lim
u↑1

H(u(1− yτu)−1/τ )
H(u)

= (1− y)α, and lim
u↑1

τ−a
u B(yτu, a, b) =

yaΓ(a + b)
aΓ(a)Γ(b)

applying Lemma 4.2 of Hashorva (2006) we obtain

lim
u↑1

P {Y (1− Za,b)1/τ > u}
τa
u [1−H(u)]

=
Γ(α + 1)Γ(a + b)
Γ(b)Γ(α + a + 1)

,

hence the proof is complete. �

Proof of Theorem 1 i) Let V ∼ Beta((d− 1)/p, 1/p) be independent of the
associated random radius R. Using (2) we have for any u > 0

P {Xi > u} =
1
2
P {R(1− V )1/p > u}, i = 1, . . . , d.(30)

In view of Theorem 8 we obtain taking τ = p

lim
u↑ω

1−Gi(u + x/w(u))
1−Gi(u)

= lim
u↑ω

1− F (u + x/w(u))
1− F (u)

= exp(−x), ∀x ∈ R,

hence Gi, 1 ≤ i ≤ d is in the Gumbel max-domain of attraction with the scaling
function w. Since F ∈ MDA(Λ) implies (5), then (4) follows. Consequently the
components of the sample maxima are asymptotically independent, hence G ∈
MDA(Q) with Q a distribution function on Rd with independent unit Gumbel
marginal distributions.
ii) By (29) and (30) it follows that Gi ∈ MDA(α + (d− 1)/p), 1 ≤ i ≤ d. Since the
upper endpoint of F is finite we have that G has all marginal distributions with finite
upper endpoint ω. In view of (2) the components of X, say Xi, Xk, i 6= k cannot be
both extreme (near enough to ω) with a non-zero probability, implying κ(X1, X2) =
0. Hence, the sample maxima has asymptotic independent components. �

Proof of Theorem 2 The assumptions imply that

X
d= RUd

d= Rd,pUd,
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with Rd,p independent of Ud.
i) ⇒ ii) In view of (2) we have

Ri,p
d= Rd,p(1− Vi)1/p,

with Vi ∼ Beta((d−i)/p, i/p) being further independent of the random radius Rd,p.
Applying Lemma 8 we obtain taking τ = p

P {Ri,p > u} = (1 + o(1))
Γ(d/p)Γ((i + α)/p)
Γ(i/p)Γ((d + α)/p)

P {Rd,p > u}, u →∞.

In view of (30) X1 is regularly varying with index α > 0 is equivalent with R1,p is
regularly varying with the same index α, hence the claim follows.
iii) ⇒ ii) Using the fact that |X1|p = Rp

1,p and X1 is symmetric about 0 establishes
the proof.
iii) ⇒ i) Clearly iii) includes i).
iv) ⇒ v) ⇒ ii) This follows easily by the definition of the regular variation.
ii) ⇒ i) Let Z = (Z1, . . . , Zd)> be a Lp-norm spherical random vector as in Exam-
ple 1 being further independent of X and let

R̃i,p :=
( i∑

j=1

|Zi|p
)1/p

, 1 ≤ i ≤ d

be the i-th random radius associated with Z. By the assumptions it follows easily
that Rp

1,p is regularly varying with index α/p. Since

R̃p
i,p ∼ Gamma(i/p, 1/p), 1 ≤ i ≤ p

and R̃i,p is independent of R1,p Lemma 7 implies that the product (R̃d,pR1,p)p is
regular varying with positive index α/p.
Let V ∼ Beta(1/p, (d − 1)/p) be independent of Z and X. Now, the stochastic
representation (2) implies

(R̃d,pR1,p)p d= R̃p
d,p(RpV ) d= R̃p

d,pV Rp
d,p

d= R̃p
1,pR

p
d,p,

consequently R̃p
1,pR

p
d,p is regularly varying with index α/p.

We have R̃p
1,p ∼ Gamma(1/p, 1/p) with R̃p

1,p independent of Rp
d,p = Rp. Applying

again Lemma 7 we have that Rp
d,p is regularly varying with positive parameter α/p,

thus the proof follows. �

Proof of Theorem 4 i) Let i, j be fixed with 1 ≤ i < j ≤ d. By the def-
inition both Xi and Xj have distribution function with the same upper endpoint
ω. Consequently, if ω < ∞ then Xi and Xj cannot be close to ω with non-zero
probability, i.e., P {Xi > ω − ε, Xj > ω − ε} = 0 for some ε > 0 small enough,
hence κ(Xi, Xj) = 0 for this case.
ii) If ω = ∞ and 1−F is rapidly varying, then in view of condition (20) the associ-
ated random radius R{i,j},p := (|Xi|p + |Xj |p)1/p has a rapidly varying distribution
function. Hence, the proofs follows then using (3) and (20). �

Proof of Theorem 5 i) Since the distribution function F is in the max-
domain of attraction of Λ and (20) is supposed to hold, then Theorem 8 implies
that Xi, 1 ≤ i ≤ d has distribution function in the same max-domain of attraction
with the scaling function w. If ω < ∞ using further Theorem 4 we get that the
sample maxima has asymptotic independent components. If ω = ∞ and λi = λ >
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0, 1 ≤ i ≤ d then Theorem 8 implies the distribution functions of Xi, 1 ≤ i ≤ d
have the same asymptotic tail behaviour (up to some constant), hence the sample
maxima has asymptotic independent components, thus the proof follows easily.
ii) Again using Theorem 8 we have that Xi, 1 ≤ i ≤ d has distribution function in
the max-domain of attraction of Ψα+λi

. Since ω < ∞ the components then Xi, Xj

cannot be both near to ω for any 1 ≤ i < j ≤ d, implying that the sample maxima
has independent components, thus the proof is complete. �

Proof of Theorem 6 The proof is similar to the proof of Theorem 2 using
further Theorem 8. �
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