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POLYNOMIAL COMPLEXITY FOR HILBERT SERIES OF
BOREL TYPE IDEALS

AMIR HASHEMI

Abstract. In this paper, it is shown that the Hilbert series of a Borel type

ideal may be computed within a complexity which is polynomial in Dn where

n + 1 is the number of unknowns and D is the highest degree of a minimal
generator of input (monomial) ideal.

1. Introduction

A classical algorithm to compute the Hilbert series of a monomial ideal, is from
its free resolution which is infeasible in practice. Bayer and Stillman [2] have proved
that the computation of Hilbert series of a monomial ideal is at least difficult as
an NP-complete problem in the number of variables, see also [5]. For some class
of monomial ideals, the computation of the Hilbert series may be less costly than
NP-complete. For example, Bayer and Stillman [2] have shown that the Hilbert
series of a Borel monomial ideal may be computed in linear time. Recall that a
monomial ideal J over the ring R = K[x0, . . . , xn] where K is an arbitrary field is
defined to be Borel if xjm ∈ J implies that xim ∈ J for any i < j.

In this paper, we study the complexity of computing the Hilbert series of a
Borel type ideal. A monomial ideal J ⊂ R is Borel type if it satisfies the following
property:

J : x∞j = J : 〈x0, . . . , xj〉∞

for all j = 1, . . . , n (see [1, 12]). We show that the Hilbert series of a Borel type
ideal may be computed within a complexity which is polynomial in Dn where n + 1
is the number of unknowns and D is the highest degree of a minimal generator of
input polynomials. For this, we describe an algorithm to decide within the same
complexity whether a monomial ideal is Borel type or not. Also, we establish a
sharper upper bound for the satiety and Castelnuovo-Mumford regularity of such
an ideal and we prove that these invariants may be computed within the above
complexity. Finally, as an application of our results, we give a new formula to
compute the degree of a Borel type ideal. This paper is a continuation of the ideas
which have first appeared in [11].

It is well-known that to compute the Hilbert series of a general ideal, we reduce
it to a monomial ideal by Gröbner basis computation. On the other hand, it follows
from the work of Mayr and Meyer [14] that the problem of computing a Gröbner
basis (in worst case) is exponential space complete. Both cardinality and maximal
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degree of a Gröbner basis might be doubly exponential in the number of variables.
Our result shows that (for an ideal whose initial ideal is Borel type) if the problem
of computing a Gröbner basis is simple then that of Hilbert series is not more
difficult. In fact, our computation suggests that the expensive part of computing
the Hilbert series of a general ideal is the Gröbner basis computation. This leads
us to the following conjecture which generalizes our result.

Conjecture 1.1. The Hilbert series of a monomial ideal may be computed within
a complexity which is polynomial in Dn where n+1 is the number of unknowns and
D is the highest degree of a minimal generator of the input ideal.

The main interest of our algorithm is its bound of complexity. In fact, with the
existing implementations (see [5, 2]), the computation of the Hilbert series is neg-
ligible with respect to that of the Gröbner basis which is needed for. It is therefore
not worthwhile to spent human time to efficiently implement our algorithm.

Now, we give the structure of the paper. In Sections 2, we recall the definition
of a Borel type ideal and we describe a polynomial-time algorithm to test whether
a monomial ideal is Borel type or not. In Section 3 (resp. 4) we establish an upper
bound and describe an algorithm having the complexity polynomial in Dn for the
satiety (resp. Castelnuovo-Mumford regularity) of a Borel type ideal. In Section 5,
we prove that one can compute the Hilbert series of a Borel type ideal within this
complexity. In Section 6, we give a formula to compute the degree of a Borel type
ideal. Finally, Section 7 presents our conclusions.

2. Borel type ideals

The purpose of this section is to study a certain class of monomial ideal which
we call Borel type ideals. We describe also an algorithm which determines whether
a monomial ideal is Borel type or not within a complexity which is polynomial in
input size.

We recall first the definition of the saturation of a homogeneous ideal. Let J be
a monomial ideal of the polynomial ring R = K[x0, . . . , xn] where K is an arbitrary
field. If m = 〈x0, . . . , xn〉 is the unique maximal homogeneous ideal of R, then we
recall that the ideal J : mi is defined for any positive integer i as

J : mi = {F ∈ R | ∀G ∈ mi, GF ∈ J}.
The ideal J : m∞ is defined

⋃∞
i=1 J : mi. Denote by J` the set of homogeneous

elements of degree ` of J .

Proposition 2.1. The ideal J sat = J : m∞ is called the saturation of J . It is the
unique largest ideal I ⊂ R for the following property:

∃s such that ∀` ≥ s I` = J`.

Proof. One can check easily that the saturation of J satisfies this property. �

For a monomial ideal J , we introduce the following sequences of ideals associated
to J . Let Ri = K[x0, . . . , xi].

Notation 2.2. Let sec(J, 0) = sec(J, 0) = J and for i = 1, . . . , n + 1:
• sec(J, i) = J + 〈xn−i+1, . . . , xn〉.
• sec(J, i) = sec(J, i) ∩Rn−i = J |xn−i+1=···=xn=0 ∩Rn−i.

Note that sec(J, i) and sec(J, i) are ideals of R and Rn−i respectively for any i.
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Lemma 2.3. Let J ⊂ R be a monomial ideal. For any ` ≤ n, the following
conditions are equivalent:

(1) sec(J, i)sat = sec(J, i) : x∞n−i for i = 0, . . . , `.
(2) sec(J, i)sat = sec(J, i) : x∞n−i for i = 0, . . . , `.
(3) J : 〈x0, . . . , xn−i〉∞ = J : x∞n−i for i = 0, . . . , `.

Proof. (1) ⇒ (3). We proceed by induction on i. For i = 0, we have Isat = I : x∞n by
definition of sec, and this proves the assertion in this case. Suppose that the asser-
tion is true for i−1. We have to prove that any (monomial) minimal generator m ∈
J : x∞n−i belongs to J : 〈x0, . . . , xn−i〉∞. For some k, we have xk

n−im ∈ J ⊂ sec(J, i).
Thus, m ∈ sec(J, i)sat by (1), and therefore xt

jm ∈ sec(J, i) = J + 〈xn−i+1, . . . , xn〉
for some integer t and for any j. We claim that m /∈ 〈xn−i+1, . . . , xn〉. If this claim
is true, xt

jm ∈ J for j = 0, . . . , n− i, and this proves the assertion.
Proof of the claim: We prove it ad absurdum. Let m = xjm

′ for some j ∈
{n − i + 1, . . . , n}. Thus m′ ∈ J : x∞j = J : 〈x0, . . . , xj〉∞ by the hypothesis of
induction. This implies that m′ ∈ J : x∞n−i. Since m is a minimal generator of
J : x∞n−i, this is impossible.

(3) ⇒ (1). It is enough to prove that any monomial m ∈ sec(J, i) : x∞n−i belongs
to sec(J, i)sat for any i. Two cases are possible: If m belongs to 〈xn−i+1, . . . , xn〉
then there is nothing to prove because 〈xn−i+1, . . . , xn〉 ⊂ sec(J, i)sat. If not, there
exists an integer k such that xk

n−im ∈ J . This implies that m ∈ J : x∞n−i =
J : 〈x0, . . . , xn−i〉∞ by (3). Thus, there exists an integer t such that xt

jm ∈ J

for j = 0, . . . , n − i, and therefore xt
jm ∈ sec(J, i) for any j. This implies that

m ∈ sec(J, i)sat. This argument was inspired by the proof of [4], Proposition 3.2.
(2) ⇒ (3). The proof is similar to (1) ⇒ (3).
(3) ⇒ (2). It suffices to show that any monomial m ∈ sec(J, i) : x∞n−i belongs

to sec(J, i)sat for any i. We have xk
n−im ∈ J for some integer k. Thus, m ∈ J :

x∞n−i = J : 〈x0, . . . , xn−i〉∞ by (2) which implies that there exists an integer t
such that xt

jm ∈ J for j = 0, . . . , n − i. The membership xt
jm ∈ Rn−i proves the

assertion. �

We recall that the dimension dim(J) of the ideal J is the dimension of the
corresponding quotient ring.

Lemma 2.4. If any condition of Lemma 2.3 is true for ` = dim(J)− 1, it is true
for any `.

Proof. By Lemma 2.3, it is enough to prove the assertion for the first condition.
Notice that if X is a zero-dimensional (monomial) ideal then Xsat = X : x∞i for
any i. Now apply this for X = sec(J, i) which is zero-dimensional by definition. �

Definition 2.5. A monomial ideal J ⊂ R is called a Borel type ideal if it satisfies
one of the equivalent conditions in Lemma 2.3 for ` = dim(J)− 1.

From Lemma 2.3(3), we conclude that the notions Borel type and nested type
(introduced in [4]) coincide.

Lemma 2.3(2) provides a new characterization of Borel type ideals from which
we derive a simple test for determining whether a monomial ideal is Borel type or
not (see the following).
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Algorithm testing Borel type ideal
Input: J ⊂ R a monomial ideal
Output: The answer to “Is J a Borel type ideal?”
G := {m1, . . . ,mk} a minimal system of generators for J
Deg := max{deg(m1), . . . ,deg(mk)}
e := highest integer ` such that xDeg

i ∈ J for i = 0, . . . , `
d := n− e
For each monomial xe0

0 · · ·xeh

h ∈ G with h > n− d and eh > 0 do
For j = 1, . . . , h− 1 do

If xe0
0 · · ·xeh−1

h−1 xDeg
j /∈ J then

Return “No”
Return “Yes, and the dimension of the ideal is d”

Proof. (Algorithm) The termination of the algorithm is obvious. Let us show its
correctness. For this, we have to prove that J is Borel type if and only if the response
of the algorithm is “Yes”. Suppose that J is Borel type and xe0

0 · · ·xeh

h ∈ G for
some h > n− d with eh > 0. This implies that (Lemma 2.3(2))

xe0
0 · · ·xeh−1

h−1 ∈ J : x∞h = J : 〈x0, . . . , xh〉∞.

Thus, xe0
0 · · ·xeh−1

h−1 xDeg
j must be in J for any j = 0, . . . , h − 1, and the answer is

“Yes”. In this case, d is the dimension of J by Nœther normalization test (see [3],
Lemma 3.1). Conversely, we can conclude that J : x∞h ⊂ J : 〈x0, . . . , xh〉∞, and
therefore J is Borel type (Lemma 2.3(2)).

�

Remark 2.6. The condition h > n − d in this algorithm is not essential, because
xDeg

i ∈ J for i = 0, . . . , n− d.

Remark 2.7. The integer d is the dimension of J if the answer of the algorithm
is “Yes” (see the proof of algorithm).

Proposition 2.8. The complexity of this algorithm is polynomial in kn.

Proof. One can easily see that the number of operations in two loops “For” is k2n2.
Thus the complexity of the algorithm is polynomial in kn. �

3. Satiety of Borel type ideals

In this section, we prove a new upper bound for the satiety of a Borel type ideal,
and we describe an algorithm of polynomial complexity in input size that computes
the satiety of such an ideal. Let us define the satiety of a monomial ideal.

Definition 3.1. The satiety of a monomial ideal J ⊂ R, denoted by sat(J), is the
smallest positive integer s such that J sat

` = J` for all ` ≥ s.

We show first an upper bound for the satiety of a Borel type ideal. For this,
a lemma from [1] is needed. Here, a linear form y ∈ R is generic for J if y is a
non-zero divisor in R/J sat.

Lemma 3.2. Let J ⊂ R be a monomial ideal and y ∈ R be a linear form. The
following conditions are equivalent:

(1) (J : y)` = J` for any ` ≥ s.
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(2) sat(J) ≤ s and y is generic for J .

Corollary 3.3. Let J ⊂ R be a Borel type ideal. Then

sat(J) = max
m∈(J:xn)\J

{deg(m)}+ 1.

Proof. Since xn is generic for J from hypothesis, (J : xn)` = J` for any ` ≥ sat(J)
by Lemma 3.2. Thus, the satiety of J is equal to the maximum degree of (J : xn)\J
plus one which proves the assertion.

�

The following theorem may follow from [4], Corollary 2.6. We give here a simpler
proof for it.

Theorem 3.4. Let J ⊂ R be a Borel type ideal and let xD0
0 · · ·xDn

n be the least
common multiple of the minimal generators of J . Then,

sat(J) ≤ max{0, D0 + · · ·+ Dn − n}.

Proof. Two cases are possible: If D0 + · · ·+ Dn − n < 0, there is some i such that
Di = 0. We claim that sat(J) = 0. For this it is enough to show that J : m = J ,
i.e. J is saturated. Let m ∈ J : m be a monomial. Thus, xim ∈ J and this implies
that m ∈ J because xi does not appear in the generators of J and this proves the
claim. In the other case, by Corollary 3.3, it suffices to prove that any monomial
m ∈ J : xn of degree D0 + · · · + Dn − n belongs to J . From degree of m, one
can show that xDi

i divides m for some i. The membership xnm ∈ J implies that
xt

im ∈ J for some t because J is Borel type. This follows that m ∈ J by the fact
that xDi

i divides m and Di is the maximal degree ` such that x`
i appears in the

minimal generators of J . �

Example 3.5. Computing the upper bounds for the satieties of some Borel type
ideals. Let R be the ring K[x0, x1, x2, x3, x4]. Consider the monomial ideal J =
〈x0, x1〉. Since 1+1−4 < 0, then sat(J) = 0. The satiety of J = 〈x2

0, x
4
1, x

5
2, x

3
3, x4〉

is less than or equal to 11 because 2 + 4 + 5 + 3 + 1− 4 ≥ 0.

The following lemma is the basis for the occurrence of Dn in our complexity
bounds.

Lemma 3.6. The number of monomials of degree at most δ = (n + 1)(D − 1) + 1
in n + 1 variables is bounded above by (eD)n+1 for D and n ≥ 0.

Proof. The number of monomials of degree at most δ in n + 1 variables is equal to(
n+1+δ

n+1

)
(see [6] p. 106 for example). By definition of the binomial coefficients, we

have (
n + 1 + δ

n + 1

)
=

(
(n + 1)D + 1

n + 1

)
=

Dn+1

(n + 1)!

n+1∏
i=1

(
n + 1 +

2− i

D

)
.

As n + 2−i
D ≤ n for i ≥ 2 and

(
n + 1− 1

D

) (
n + 1 + 1

D

)
< (n + 1)2, we have for

n > 1 (
n + 1 + δ

n + 1

)
<

(n + 1)n+1

(n + 1)!
Dn+1,
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which implies that
(
n+1+δ

n+1

)
< (eD)n+1 by Stirling’s formula where e = 2.71828 · · ·

is the usual Euler constant. For n = 0 the result is easily proved directly. �

Corollary 3.7. The satiety of a Borel type ideal may be computed by a complexity
polynomial in Dn where D is the highest degree of its minimal generator.

Proof. Let J ⊂ R be a Borel type ideal. If D = 1, two cases are possible: If
Dn = 1 then J = m and sat(J) = 1. In the other case, i.e. Dn = 0, we have
sat(J) = 0 (see Theorem 3.4). Thus, if D = 1 the bound polynomial in Dn holds.
Now, suppose that D ≥ 2. By Corollary 3.3 and Theorem 3.4, it is enough to find
the maximal degree h ≤ δ = (n + 1)(D − 1) + 1 such that there is a monomial m
of this degree with m ∈ (J : xn) \ J . The number of these monomials is (eD)n+1

(Lemma 3.6) and the cost of the last condition is k(n + 1) operations where k is
the number of minimal generators of J . Thus the complexity of this computation
is k(n + 1)(eD)n+1. This is polynomial in Dn because k ≤ (eD)n+1 (by Lemma
3.6), n + 1 ≤ 20.55(n+1) ≤ D0.55(n+1) and e < D1.45 (by D ≥ 2). �

4. Castelnuovo-Mumford regularity of Borel type ideals

In this section, we prove a new upper bound for the Castelnuovo-Mumford reg-
ularity of a Borel type ideal, and we describe an algorithm having the polynomial
complexity in input size to compute the Castelnuovo-Mumford regularity of such
an ideal. Let us define the Castelnuovo-Mumford regularity of a monomial ideal
J ⊂ R. If

0 −→
⊕

j

R(erj) −→ · · · −→
⊕

j

R(e1j) −→
⊕

j

R(e0j) −→ J −→ 0

is a minimal graded free resolution of J , reg(J) is the maximal of eij − i for each
i and j. To establish an upper bound for the Castelnuovo-Mumford regularity of a
Borel type ideal, we use the following lemmas from [1].

Lemma 4.1. Let J ⊂ R be a monomial ideal, and y ∈ R be a generic linear form
for J . The following conditions are equivalent:

• reg(J) ≤ s.
• sat(J) ≤ s and reg(J + 〈y〉) ≤ s.

Lemma 4.2. Let J ⊂ R be a zero–dimensional monomial ideal. The following
conditions are equivalent:

• sat(J) ≤ s.
• reg(J) ≤ s.
• Js is equal to the set of homogeneous polynomials of degree s of R.

Corollary 4.3. With the same hypothesis, we have reg(J) = sat(J).

Proposition 4.4. Let J ⊂ R be a Borel type ideal and let d = dim(J).

reg(J) = max
0≤i≤d

{sat(sec(J, i))}(1)

= max
0≤i≤d

{sat(sec(J, i))}.(2)

Proof. To prove the equality (1), from Lemma 4.1 we have

reg(J) = max{sat(J), reg(sec(J, 1))}.
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By reusing this formula for the ideal sec(J, 1) and using the fact that xn−1 is generic
for sec(J, 1) we obtain

reg(J) = max{sat(J),max{sat(sec(J, 1)), reg(sec(J, 2))}}
= max{sat(J), sat(sec(J, 1)), reg(sec(J, 2))}.

So by induction, we can conclude that reg(J) is equal to

max{sat(J), sat(sec(J, 1)), . . . , sat(sec(J, d− 1)), reg(sec(J, d))}.

Since sec(J, d) is zero–dimensional (see for example [10], Lemma 5), then

reg(sec(J, d)) = sat(sec(J, d)),

(Corollary 4.3), and this proves the assertion.
Let us prove (2). It is enough to show that sat(sec(J, i)) = sat(sec(J, i)) for any

i. By the membership xn−i+1, . . . , xn ∈ sec(J, i) we have

sec(J, i)sat = sec(J, i)sat|xn−i+1=···=xn=0 ∩Rn−i,

by definition of the saturation of an ideal, and this proves the assertion.
�

As a consequence of Proposition 4.4 and Corollary 3.7 we have:

Corollary 4.5. The Castelnuovo-Mumford regularity of a Borel type ideal may be
computed by a complexity polynomial in Dn where D is the highest degree of its
minimal generator.

If D = 1, we can conclude simply that the regularity of the ideal is 1 (see the
proof of Corollary 3.7). Imran and Sarfraz [13], have proved the upper bound
(n + 1)D − n for the Castelnuovo-Mumford regularity of a Borel type ideal where
D is the highest degree of a minimal generator of the ideal. We improve this bound
in the following theorem.

Theorem 4.6. Let J ⊂ R be a Borel type ideal and let xD0
0 · · ·xDn

n be the least
common multiple of the minimal generators of J . Then,

reg(J) ≤ max{D0 + · · ·+ Dn−d − (n− d), . . . , D0 + · · ·+ Dn − n}.

Proof. Since sec(J, i) for any i is Borel type, then its satiety is at most max{0, D0 +
· · ·+ Dn−i − n + i} by Theorem 3.4. Thus, the assertion follows from Proposition
4.4 and the fact that D0 + · · ·+ Dn−d > n− d. �

Example 4.7 (Computing an upper bound for the Castelnuovo-Mumford regu-
larity of a Borel type ideal.). Let R be the ring K[x0, x1, x2, x3, x4]. Consider the
monomial ideal J = 〈x0, x

2
1〉. Thus, its regularity is at most max{1 + 2− 4, 1 + 2−

3, 1 + 2− 2, 1 + 2− 1} = 2.

5. Hilbert series of Borel type ideals

In this section, we describe an algorithm to compute the Hilbert series of a Borel
type ideal within a polynomial complexity in input size.

Let X be a graded module or an ideal and δ be a positive integer. We denote
by Xδ (resp. X≥δ) the set of elements of X of degree (resp. at least) δ. Recall
that the Hilbert series of a monomial ideal J ⊂ R is the power series HSJ(t) =
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s=0 HFJ(s)ts where HFJ(s), the Hilbert function of J , is the dimension of (R/J)s

as a K-vector space. From this definition, we have

HSJ<δ
(t) = HFJ(0) + · · ·+ HFJ(δ − 1)tδ−1 +

∞∑
i=δ

(
n + i

n

)
ti(3)

HSJ≥δ
(t) =

δ−1∑
i=0

(
n + i

n

)
ti + HFJ(δ)tδ + HFJ(δ + 1)tδ+1 + · · ·(4)

for any δ. Thus, we can conclude that HSJ = HSJ<δ
+ HSJ≥δ

− HS〈0〉. Therefore,
to prove that the Hilbert series of a Borel type ideal J may be computed within a
complexity polynomial in Dn, it is enough to prove the same for these three Hilbert
series for δ = D0 + · · · + Dn − n. Let us to compute HSJ≥δ

. For this, we prove
first that for any monomial ideal J ⊂ R, the homogeneous ideal J≥δ is stable. A
monomial ideal J ⊂ R is called stable (see [7]) if for all monomial m ∈ J we have
xjm/x` ∈ J for all j < ` where ` is the maximal integer i such that xi divides m.
We remark that this result has proved by Imran and Sarfraz [13] for δ = (n+1)D−n
and we generalize it here by another approach.

Lemma 5.1. Let J ⊂ R be a Borel type ideal and let xD0
0 · · ·xDn

n be the least
common multiple of the minimal generators of J . Then J≥δ is stable for δ =
max{D0 + · · ·+ Di − i | i = n− d, . . . , n} with d = dim(J).

Proof. Let m ∈ J≥δ be a monomial, ` be the maximal integer i such that xi divides
m and j < ` be an integer. By definition m ∈ sec(J, n − `). It follows by the
definition of Borel ideal that m/x` ∈ sec(J, n − `) : x∞n−` ⊂ sec(J, n − `)sat. This
implies that xjm/x` ∈ sec(J, n − `) because deg(xjm/x`) ≥ δ is greater than
sat(sec(J, n − `)) by Theorem 4.6 and Proposition 4.4. Therefore xjm/x` ∈ J .
Remark that for ` < n − d we used the fact that the ideal sec(J, n − `) contains
sec(J, d) which is zero-dimensional and thus sat(sec(J, n − `)) ≤ sat(sec(J, d)) ≤
δ. �

Recall that HSJ(t) = P (t)/(1 − t)n+1 where P (t) is a polynomial in t (see [8],
Theorem 7 of Chapter 11). We denote this polynomial by NHSJ(t).

Lemma 5.2. With the hypotheses of Lemma 5.1, we have NHSJ≥δ
(t) = 1 −

tδ
∑n

i=0 ai(1 − t)i where ai is the number of monomial m ∈ Jδ such that i is the
maximal integer ` with x` | m.

Proof. Let J≥δ = 〈m1, . . . ,mk〉 and mi be arranged such that mi+1 is greater than
mi for all i using the lexicographic order xn > xn−1 > · · · > x0. Thus, by [2]
Corollary 2.3 we have

NHSJ≥δ
(t) = NHS〈m1〉(t) +

kX

i=2

tdeg(mi)NHS〈m1,...,mi−1〉:mi
(t).

Notice that by the stable property of J≥δ (Lemma 5.1) we have that 〈m1, . . . ,mi−1〉 :
mi = 〈x0, . . . , xvi−1〉 where vi is the maximal integer ` with x` | mi. Therefore,
using the fact that deg(mi) = δ

NHSJ≥δ
(t) = NHS〈m1〉(t) + tδ

k∑
i=2

NHS〈x0,...,xvi−1〉(t).
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The zero-dimensionality of J + 〈xn, . . . , xn−dim(J)+1〉 implies that m1 = xδ
0, and

therefore NHS〈m1〉(t) = 1−tδ. Thus, the assertion follows from NHS〈x0,...,xvi−1〉(t) =
(1− t)vi (see [2] Corollary 2.5) and definition of ai. �

Theorem 5.3. Let J ⊂ R be a Borel type ideal. The Hilbert series of J may be
computed by a complexity polynomial in Dn where D is the highest degree of its
minimal generator.

Proof. If D = 1 then J = 〈x0, . . . , xi〉 for some integer i (by definition), and
HSJ(t) = 1/(1− t)n−i. Thus, the bound polynomial in Dn holds in this case. Now,
let D ≥ 2 and δ = max{D0 + · · ·+Di− i | i = n−dim(J), . . . , n} where xD0

0 · · ·xDn
n

is the least common multiple of the minimal generators of J . Using the formula
HSJ = HSJ<δ

+ HSJ≥δ
− HS〈0〉 it is enough to prove the assertion for these three

Hilbert series. We know that HS〈0〉(t) = 1/(1 − t)n+1. To compute HSJ<δ
and

HSJ≥δ
(Lemma 5.2) it suffices to list the monomials of degree ≤ δ which are not

in J . Since the number of monomials of degree ≤ δ ≤ (n + 1)D − n is at most
(eD)n+1 and the cost of testing whether a monomial belongs to J or not is k(n+1)
operations, these Hilbert series is computed by k(n + 1)(eD)n+1 operations which
is polynomial in Dn. �

Example 5.4. Computing the Hilbert series of a Borel type ideal. Let R be the
ring K[x0, x1, x2, x3, x4]. Consider the following monomial ideal from [4], Example
3.13

J = 〈x4
0, x

3
0x1, x

2
0x

2
1, x

4
1, x

3
0x2, x

2
0x

2
2, x

3
1x

5
2, x

3
0x3, x

3
0x

2
4〉.

This is an ideal of dimension 3, and it is Borel type by algorithm testing Borel type
ideal. By formula (3) we have HSJ<δ

(t) = P (t)/(1− t)5 where δ = 12 and P (t) is

1+3t8−6t7+2t6+7t5−7t4+t10−t11+1271t12−4613t13+6327t14−3883t15+899t16.

By a simple computation (using the software [9]) we have a0 = 1, a1 = 12, a2 =
72, a3 = 187 and a4 = 899 (see the notation of Lemma 5.2). Thus, HSJ≥δ

(t) is
equal to

1− t12(13− 12t + 72(1− t)2 + 287(1− t)3 + 899(1− t)4)
(1− t)5

which follows that

HSJ(t) = HSJ<δ
+ HSJ≥δ

− 1
(1− t)5

=
1 + 2t + 3t2 + 4t3 − 2t4 − t5 + 2t6 − t7 − t8 − t9

(1− t)3
.

6. Degree of Borel type ideals

In this section, we give a formula for the degree of a Borel type ideal. We recall
first the definition of the degree of a monomial ideal J ⊂ R.

Proposition 6.1. We have HSJ(t) = N(t)/(1 − t)d where N(t) is a polynomial
which is not multiple of 1− t, and d = dim(J).

For the proof of this proposition see [8], Theorem 7 of Chapter 11. Using this
proposition we define the degree of a monomial ideal.

Definition 6.2. The degree of a monomial ideal J ⊂ R, noted by deg(J), is N(1)
where N is the numerator of HSJ .
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Let J be a Borel type ideal and δ = D0 + · · · + Dn − n where xD0
0 · · ·xDn

n

is the least common multiple of the minimal generators of J . Using the formula
HSJ = HSJ<δ

+ HSJ≥δ
−HS〈0〉, and the fact that HSJ<δ

−HS〈0〉 is a polynomial in
t, we can conclude that (Lemma 5.2) N(t) = (1− tδ

∑n
i=0 ai(1− t)i)/(1− t)n+1−d

where ai is the number of monomial m ∈ Jδ such that i is the maximal integer `
with x` | m. Let s = 1−t. Hence, N(1−s) = (1−(1−s)δ

∑n
i=0 ais

i)/sn+1−d. Thus
the degree of J which is N(1) is the coefficient of sn+1−d in 1− (1− s)δ

∑n
i=0 ais

i

which is equal to −
∑n−d+1

i=0 (−1)ian+1−d−i

(
δ
i

)
. We summarize this result in the

following theorem.

Theorem 6.3. Let J ⊂ R be a Borel type ideal. The degree of J is

−
n−d+1∑

i=0

(−1)ian+1−d−i

(
δ

i

)
where d = dim(J), δ = D0+· · ·+Dn−n with xD0

0 · · ·xDn
n the least common multiple

of the minimal generators of J and ai is the number of monomial m ∈ Jδ such that
i is the maximal integer ` with x` | m.

Remark 6.4. Since the ideal J +〈xn, . . . , xn−d+1〉 is zero-dimensional, then xDi
i ∈

J for i = 0, . . . , n − d. Thus, a0 = 1 and ai =
(
i+δ

i

)
− ai−1 − · · · − a0 for any

i < n− d + 1.

Corollary 6.5. Let J = 〈m1, . . . ,mk〉 be a Borel type ideal. The degree of J may
be computed by k(n + 1− d)

(
n−d+δ

n−d

)
operations.

From this corollary, we conclude that the complexity of computing the degree of
a Borel type ideal by this theorem is sharper than computing it using Hilbert series
of the ideal.

Example 6.6. Computing the degree of a Borel type ideal. Let us consider the
ideal of Example 5.4. Its degree is equal to

−(72
(

12
0

)
− 12

(
12
1

)
+

(
12
2

)
) = 6.

7. Conclusion

In this paper, we have presented a new algorithm which computes the Hilbert
series of a Borel type ideal within a complexity polynomial in Dn where n+1 is the
number of unknowns and D is the highest degree of a minimal generator of input
polynomials. We have shown also that the satiety, Castelnuovo-Mumford regularity
and degree of such an ideal may be computed within the above complexity.
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