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REFLECTION AND TRANSMISSION OF WAVES AT
AN ELASTIC INTERFACE OF TWO HALF SPACES

SUBJECT TO PURE SHEAR

WASIQ HUSSAIN

Abstract. We study the effect of pure shear on the reflection and transmis-
sion of plane waves at the boundary between two half-spaces of incompressible
isotropic elastic material. The half-spaces consist of the same material and are
subjected to pure shear deformation with their principal axes aligned. The ob-
jective is to highlight the dependence of the amplitudes of the elastic waves on
the finite pure shear deformation and thereby to provide a theoretical frame-
work for the non-destructive evaluation at the shear interface.

When the first half-space corresponds to a certain class of constitutive laws
and the second half-space (not in this special class), depending upon the angle
of incidence, the material properties, and the magnitudes of deformations, it is
shown that a homogeneous plane (SV) wave propagating in the plane of pure
shear gives rise to a reflected wave (with angle of reflection equal to the angle
of incidence) together with an interfacial wave in the same half-space, while in
the other half-space there is a transmitted wave accompanied by an interfacial
wave.

The dependence of the amplitudes of the reflected, transmitted, and interfa-
cial waves on the angle of incidence and the states of deformation is illustrated
graphically. The results described here provide a basis for the characterization
of material properties and the finite homogeneous shear deformation.

1. Introduction

In [1] Hussain and Ogden have examined the effect of a finite simple shear defor-
mation on the reflection of superimposed infinitesimal plane waves incident on the
boundary of a half-space of incompressible isotropic elastic material. References
to the literature concerned with reflection at the boundary of a finitely deformed
half-space are contained in [2,3].

In the present paper the effect of pure shear on the reflection and transmission
of plane (shear) waves at the boundary between two half-spaces which consist of
the same material (but with different strain-energy functions) is considered. This
problem of mixed strain-energy functions has not apparently been considered previ-
ously. The configuration is intended to describe the finite pure homogeneous shear
deformation associated with the two half-spaces with a view to study theoretically
the vibration and wave propagation characteristics of rubber like solids.
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The required equations and notations are summarized in Section 2. In Sec-
tion 3 the propagation of plane harmonic waves is discussed with reference to the
slowness curves appropriate for the two distinct classes of strain-energy functions.

The amplitudes of the reflected, transmitted and interfacial waves are calcu-
lated in Section 4 when a given homogeneous plane (shear) wave is incident on
the boundary. A combined case of (distinct) strain-energy functions is discussed.
In the paper by Dey and Addy [4] reflection and refraction of plane waves at an
interface is discussed, which, as pointed out by Norris [5], contains fundamental
errors.

For each angle of incidence a single reflected wave, with angle of reflection equal
to the angle of incidence, is generated when a homogeneous plane (SV) wave is in-
cident on the boundary from one half-space, and it is accompanied by an interfacial
wave. In x2 > 0 a transmitted wave and an interfacial wave are generated for all
angles of incidence.

The theory in Section 4 is illustrated in Section 5 using graphical results to
show the dependence of the amplitudes of the waves on the angle of incidence for
representative values of the deformation parameters.

Finally, in Section 6 conclusions are given, describing the significance of the
results obtained along with the research options for the extension of the analysis
done in this paper.

2. Basic equations

We identify the undeformed configuration of the material, B0 say, and let a
material particle in B0 be labelled by its three dimensional position vector X. Let
x be the position vector of the same particle in the deformed configuration, B say.
We write the deformation of the material from B0 to B, χ say, as

x = χ(X), X ∈ B0.

The deformation gradient tensor A is defined as

A = Gradχ,

where Grad denotes the gradient with respect to X, and is subject to the usual
condition

detA > 0.

The polar decomposition theorem enables the second order tensor A to be written
as

A = VR,

where R is a proper orthogonal tensor and V is the symmetric and positive definite
left stretch tensor.

Let dX is an arbitrary line element based at X in the reference configuration
and dx is the corresponding line element at x in the deformed configuration. The
stretch in the direction of dX at X , is defined as the ratio of current to reference
lengths of a line element and is given by

|dx|
|dX| = λ(M),

where M is a unit vector along dX.
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The volume elements dV and dv in the reference and deformed configurations
respectively are related by

dv = (detA) dV,

therefore for a volume preserving deformation we have

(1) detA ≡ λ1λ2λ3 = 1,

where λi (> 0) (i = 1, 2, 3) are the eigenvalues (principal stretches), corresponding
to the eigenvectors vi (i = 1, 2, 3), of the symmetric and positive definite tensor
V.

Let S denote the nominal stress tensor. Then, the equilibrium equation, in the
absence of body forces, is

DivS = 0,

where Div is the divergence operator in the reference configuration and 0 ∈ R3.
The measure of the energy stored per unit reference volume in the material as a

result of deformation is called the elastic stored energy function. More commonly,
the phrase strain-energy function is used to describe W (say) and this is the ter-
minology we adopt in this paper.

For a (homogeneous) elastic material with strain-energy function W = W (A)
per unit volume, subject to the incompressibility constraint given by Eq. (1), we
have

S =
∂W

∂A
− pA−1,

where p is a Lagrange multiplier, which can be identified as a hydrostatic pressure
associated with the incompressibility constraint. In general, it is a scalar function
of time t, and in the literature is often introduced with the opposite sign.

An isotropic elastic material is an elastic material whose symmetry group con-
tains the proper orthogonal group for at least one reference configuration. In such
a reference configuration the mechanical response of the material exhibits no pre-
ferred direction, and it is this property that characterizes isotropy. If the material
is isotropic, W depends symmetrically on λ1, λ2, λ3 subject to Eq. (1) and we
write W (λ1, λ2, λ3).

For the isotropic material, the principal Cauchy stresses are given by

σi = λi
∂W

∂λi
− p, i ∈ {1, 2, 3}.

For (plane strain) deformations confined to the (1, 2)-plane, we may set λ3 = 1, so
that Eq. (1) reduces to

λ1λ2 = 1.

Homogeneous pure shear deformation is defined by

λ1 = λ 6= 1, λ2 = λ−1, λ3 = 1 with σ1 6= 0, σ2 = 0,

where a non-vanishing stress σ3 is required to maintain λ3 = 1. Superimposed
on the deformation just described we consider incremental motions in the (x1, x2)-
plane with displacement vector v having components

v1(x1, x2, t), v2(x1, x2, t), v3 = 0.
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The (linearized) incremental incompressibility condition divv = 0 enables v1, v2

to be expressed in terms of a scalar function, ψ(x1, x2, t) say, so that

(2) υ1 = ψ,2, υ2 = −ψ,1,

where ,i denotes ∂/∂xi, i ∈ {1, 2}.
The incremental nominal stress tensor is denoted by Σ when referred to the

deformed configuration. Its components are given by

(3) Σji = A0jilkvk,l + pvj,i − πδij ,

where π is the increment in p and A0jilk are the components of the fourth-order
tensor A0 of instantaneous elastic moduli (see, for example, Ogden [6]).

The components of A0 in terms of the derivatives of the strain-energy function
W are given by

A0iijj = λiλjWij ,

A0ijij =
(λiWi − λjWj)λ2

i

(λ2
i − λ2

j )
i 6= j, λi 6= λj ,

A0ijij =
1
2
(A0iiii −A0iijj + λiWi) i 6= j, λi = λj ,

A0ijji = A0jiij = A0ijij − λiWi i 6= j,

(4)

where Wi = ∂W/∂λi, Wij = ∂2W/∂λi∂λj and there is no summation over repeated
indices. Here, the components A0jilk are constants because the deformation under
consideration is homogeneous.

The equation of motion is given by

(5) A0jilkvk,jl − π,i = ρv̈i, i ∈ {1, 2},
where ρ is the mass density of the material and there is summation from 1 to 2 over
repeated indices. The equations of motion given by Eq. (5) yield, on restriction to
the considered plane motion,

(A01111 −A01122 + p)υ1,11 − π,1 +A02121υ1,22 + (A02121 − σ2)υ2,12 = ρϋ1,

(A02222 −A02211 + p)υ2,22 − π,2 +A01212υ2,11 + (A02121 − σ2)υ1,12 = ρϋ2,
(6)

where a superposed dot indicates the material time derivative.
Elimination of π from Eq. (6), and use of Eq. (2) yields an equation for ψ, namely

(7) αψ,1111 + 2βψ,1122 + γψ,2222 = ρ(ψ̈,11 + ψ̈,22),

as given in [1], where the constants α, β, γ are defined by

(8) α = A01212, γ = A02121, 2β = A01111 +A02222 − 2A01122 − 2A01221.

From Eq. (3), by using Eq. (2), the shear and normal components of the incremental
nominal traction Σ21, Σ22 on a plane x2 = constant are expressible in terms of ψ
through

Σ21 = γψ,22 − (γ − σ2)ψ,11,

−Σ22,1 = (2β + γ − σ2)ψ,112 + γψ,222 − ρψ̈,2,
(9)

in the latter of which the incremental hydrostatic pressure π has been eliminated
by differentiating Σ22 with respect to x1 and then using first equation in Eq. (6).

For any type of detail discussion, related to basic equations, the reader is re-
quested to see Ogden [6].
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3. Plane waves

We consider time-harmonic homogeneous plane waves of the form

(10) ψ = A exp[ik(x1 cos θ + x2 sin θ − ct)],

where A is a constant, c (> 0) the wave speed, k (> 0) the wave number and
(cos θ, sin θ) the direction cosines of the direction of propagation of the wave in the
(x1, x2)-plane. Substitution of Eq. (10) into Eq. (7) gives

(11) α cos4 θ + 2β sin2 θ cos2 θ + γ sin4 θ = ρc2.

Equation (11) is a relationship between the wave speed and the propagation di-
rection in the (x1,x2)-plane and is called the propagation condition. The material
constants are taken to satisfy the strong ellipticity inequalities

(12) α > 0, γ > 0, β > −√αγ,

and it is clear from Eq. (11) that ρc2 > 0 if and only if Eq. (12) hold.
Similarly, from Eq. (7), for an inhomogeneous plane wave of the form

(13) ψ = Â exp[ik′(x1 − imx2 − c′t)],

we obtain

(14) α− 2βm2 + γm4 = ρ(1−m2)c′2,

which relates the wave speed c′ to the ‘inhomogeneity factor’ m. Note that the
wave decays exponentially as x2 → −∞(+∞) provided m has positive (negative)
real part.

We now consider two half-spaces of the same incompressible isotropic elastic
material. The half-spaces are subjected to pure shear deformation and then bonded
along their common (plane) boundary in such a way that the principal directions
of strain are aligned, one direction being normal to the interface.

Let λ1, λ2, λ3 be the stretches associated with the half-spaces x2 < 0, x2 > 0,
with strain energy function W and the material constants α, β, γ defined by
Eq. (4) with Eq. (8).

We take the deformation to correspond to pure shear with λ3 = 1 so that, with
reference to the incompressibility condition (1), we introduce the notation λ such
that

λ1 = λ−1
2 = λ.

We consider two distinct cases corresponding to different strain-energy functions.
For these either 2β = α + γ or 2β 6= α + γ.

3.1. Case A: 2β = α + γ. For this case equations Eq. (11) and Eq. (14) reduce
to

(15) α cos2 θ + γ sin2 θ = ρc2

and

(16) (m2 − 1)(α− γm2 − ρc′2) = 0

respectively.
In terms of the slowness vector (s1, s2) defined by

(s1, s2) = (cos θ, sin θ)/c
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Eq. (15) becomes the slowness curve

(17) λ4s1
2 + s2

2 = ρ,

in the (s1, s2)-space, where ρ is defined by

(18) ρ = ρ/γ,

and α/γ = λ4 follows from Eq. (4) and Eq. (8).
By using the dimensionless notation (s1, s2) defined by

(19) (s1, s2) ≡ (s1, s2)/
√

ρ,

we can write Eq. (17) as

(20) λ4s1
2 + s2

2 = 1.

3.2. Case B: 2β 6= α + γ. In this case we take the strain-energy function to
satisfy β =

√
αγ which was used by Hussain and Ogden in [1]. Then Eq. (11)

takes the form

(21) [
√

α cos2 θ +
√

γ sin2 θ]2 = ρc2

and Eq. (14) becomes

(22) (
√

α−√γm2)2 = ρ(1−m2)c′2.

The slowness curve corresponding to Eq. (21) is given by

(23) [λ2s2
1 + s2

2]
2 = s1

2 + s2
2,

in dimensionless form with the notation given by Eq. (19) and ρ defined by Eq. (18).
We now show graphically the dependence of the slowness curves on λ for both
classes of strain-energy functions in (s1, s2)-space with reference to Eq. (20) and
Eq. (23)(See Fig. 1-2).
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Figure 1. Slowness curves in (s1, s2)-space for λ = 1.4 with
(a) 2β = α + γ, (b) 2β 6= α + γ, (c) the superposition of Figs. in
(a) and (b).
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Figure 2. Slowness curves in (s1, s2)-space for λ = 2.5 with
(a) 2β = α + γ, (b) 2β 6= α + γ, (c) the superposition of Figs. in
(a) and (b).

4. Reflection and transmission at the interface

The boundary conditions corresponding to continuous displacement are v1 =
v∗1 , v2 = v∗2 on x2 = 0, where v1, v2 are the displacement components in x2 < 0
and v∗1 , v∗2 are those in x2 > 0. From Eq. (2) these boundary conditions can be
written in terms of the scalar functions ψ and ψ∗ as

(24) ψ,1 = ψ∗,1, ψ,2 = ψ∗,2 on x2 = 0,

where ψ∗ is the counterpart of ψ for x2 > 0.
The boundary conditions for continuous incremental traction on the interface

are

(25) Σ21 = Σ∗21, Σ22 = Σ∗22 on x2 = 0,

where Σ21, Σ22 are the traction components in x2 < 0 and Σ∗21, Σ∗22 are those
in x2 > 0.

From Eq. (9) the boundary conditions given by Eq. (25) take the forms

ψ,11 − ψ,22 = ψ∗,11 − ψ∗,22,

(2β + γ)(ψ,112 − ψ∗,112) + γ(ψ,222 − ψ∗,222)− ρ(ψ̈,2 − ψ̈∗,2) = 0,
(26)

in terms of ψ and ψ∗, where, in order to obtain the second equation in Eq. (26),
the second equation in Eq. (25) has been replaced by Σ22,1 = Σ∗22,1 and use made
of the second equation in Eq. (9) and its counterpart for x2 > 0.

We now consider a wave incident on the boundary x2 = 0 from the region
x2 < 0 with direction of propagation (cos θ, sin θ) in the (x1, x2)- plane and speed
c.Because of the symmetry of slowness curves with respect to the normal direction
to the interface we henceforth, without loss of generality, restrict attention to values
of θ in the interval [0, π/2]. We write the solution comprising the incident wave,
a reflected wave (with angle of reflection equal to the angle of incidence) and an
interfacial wave in x2 < 0 as

ψ = A exp[ik(x1 cos θ + x2 sin θ − ct)] + AR exp[ik(x1 cos θ − x2 sin θ − ct)]

(27) + AR′ exp[ik′(x1 − imx2 − c′t)],
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where R is the reflection coefficient and R′ measures the amplitude of the inter-
facial wave. The notations k′, m, c′ are as used in Eq. (13) and m has positive
real part.

In the half-space x2 > 0 we write the solution comprising a transmitted and an
interfacial wave in the form
(28)
ψ∗ = AR∗ exp[ik∗(x1 cos θ∗ + x2 sin θ∗ − c∗t)] + AR∗

′
exp[ik∗

′
(x1 + im∗x2 − c∗

′
t)],

where R∗ is the transmission coefficient and R∗
′

is the analogue of R′ for x2 > 0.
The transmitted wave has direction of propagation (cos θ∗, sin θ∗), wave number
k∗ and speed c∗, while k∗

′
, m∗, c∗

′
are the counterparts of k′, m, c′. Note that

the interfacial wave decays as x2 →∞ provided m∗ has positive real part.
According to the Snell’s law we have

(29) cos θ/c = 1/c
′
= cos θ∗/c∗ = 1/c∗

′
.

Eq. (29) states in particular, that the first components of the slowness vectors for
each homogeneous plane wave interacting at the boundary x2 = 0 are equal.

Thus, by reference to the slowness curves (superimposed) as exemplified in
Fig. 1(c) and Fig. 2(c), the range of angles of incidence for which a transmitted
wave exists can be identified. In Figs. 1(c) and 2(c), for example, if the inner curve
corresponds to x2 < 0 there is, for every angle of incidence (i.e. for every s1

associated with the curve) a point on the outer curve (corresponding to x2 > 0),
and hence a transmitted wave.

We now examine here the case in which 2β = α+γ (x2 < 0), 2β 6= α+γ (x2 > 0).
Analogous results, obtainable for 2β 6= α + γ (x2 < 0), 2β = α + γ (x2 > 0) will be
discussed elsewhere.

4.1. 2β = α + γ (x2 < 0), 2β 6= α + γ (x2 > 0) . In this case we see from Eq. (16)
that m = ±1, which yields an interfacial wave in the half-space x2 < 0 for m = 1.
The zeros of the other quadratic factor in Eq. (16) correspond to m = i tan θ and
m = −i tan θ which are associated, respectively, with the incident and reflected
waves in x2 < 0.

In x2 > 0, from the counterpart of Eq. (22), after using α/γ = λ4 and Snell’s
law cos θ∗/c∗ = 1/c∗

′
, we have

(m∗2 + t∗2)[m∗2(1 + t∗2)− t∗2 + λ2(λ2 − 2)] = 0,

where t∗ = tan θ∗.
The solution m∗ = it∗ corresponds to a transmitted wave provided t∗ is real

and positive. The other relevant solution is

(30) m∗ = ±
√

1− (λ2 − 1)2/(1 + t∗2)

with the plus sign when m∗ is real. The nature of m∗ in Eq. (30) depends on that
of t∗, which is obtained by using the propagation condition given by Eq. (15) and
the counterpart of Eq. (21) for the (transmitted) wave with direction of propagation
(cos θ∗, sin θ∗) and speed c∗ together with Snell’s law Eq. (29). This gives a
quadratic for t∗2, which we write as

(31) t∗4 + t∗2(2λ2 − λ4 − t2)− t2 = 0,

and the notation t = tan θ has been introduced. Note that t should be distin-
guished from the time variable t used earlier.
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If t∗1
2 and t∗2

2 are the roots of Eq. (31) then we have

t∗1
2t∗2

2 = −t2,

which shows that there is one positive and one negative solution for t∗2, and hence
one transmitted and one interfacial wave. See also Fig. 1(c) and Fig. 2(c).

When there is no refraction, i.e. a transmitted wave has the same direction of
propagation as the incident wave (θ∗ = θ). For this to be the case we must have
t∗ = t, and Eq. (31) gives λ = 1, which is not possible in case of pure shear
deformation.

The coefficients R, R′, R∗ and R∗
′

are determined by using the boundary con-
ditions given by Eq. (24) and Eq. (26), with the second equation in Eq. (26) taking
the form

(32) (λ4 + 2)ψ,112 − (2λ2 + 1)ψ∗,112 + ψ,222 − ψ∗,222 − ρ(ψ̈,2 − ψ̈∗,2) = 0

in this case, where ρ is given by Eq. (18). Substitution of ψ and ψ∗ from
Eq. (27)(with m = 1) and Eq. (28) in Eq. (24), the first equation in Eq. (26),
and Eq. (32) leads to

1 + R + R′ = R∗ + R∗
′
,

t(1−R)− iR′ = t∗R∗ + im∗R∗
′
,

(1 + R)(t2 − 1)− 2R′ = (t∗2 − 1)R∗ − (1 + m∗2)R∗
′
,

t∗2{2it(R− 1) + R′(t2 − 1)}+ R∗(t2 + t∗2)it∗+

R∗
′{t∗4 + t∗2(m∗2 − 1)− t2}m∗ = 0.

(33)

In the latter equation use has been made of Eq. (31) in order to simplify the
coefficients.

The solution of Eq. (33) may be written in the form

R =
(t + i)(t∗ − t)F (t)

(t− i)(t∗ + t)F (−t)
,

R′ =
2t(t− t∗)G′

(t∗ + i)(t− i)F (−t)
,

R∗ =
2t(t + i)G∗

(i + t∗)(t∗ − im∗)(t∗ + t)F (−t)
,

R∗
′
=

2t(i + t)(t∗ − t)t∗

i(m∗ + it∗)F (−t)
,

(34)

where F (t), G′, G∗ are defined by

F (t) = t2(t∗ − i)− tt∗i(m∗ + 1) + m∗t∗2(t∗ + im∗),

G′ = m∗t∗(t∗2 + im∗t∗ + 1)− it2,

G∗ = m∗t∗4 + t∗2(t2 + m∗3 + m∗2 + m∗)−m∗t2,

and F (−t) is obtained from F (t) by replacing t by −t without changing t∗. In
these equations, for given t, m∗ is obtained from Eq. (30) so as to have positive
real part and t∗ from Eq. (31). In Section 5 graphical results for the absolute
values of R, R

′
, R∗ and R∗

′
are given for illustration. All the figures have been

produced using Mathematica [7].
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5. Numerical Results

The slowness curves (superimposed) in Fig. 1(c) and Fig. 2(c) show that there is
one reflected wave, one transmitted wave and two interfacial waves for each possible
angle of incidence when 2β = α + γ (x2 < 0), 2β 6= α + γ (x2 > 0).

In Figs. 3-6, |R|, |R′|, |R∗|, |R∗′ | respectively are plotted, using Eq. (34), as func-
tions of θ for a series of values of λ. Figs. (3-4) show, in particular, that as λ
increases the maximum values of the reflected wave and the interfacial wave ampli-
tudes (in x2 < 0) |R| and |R′| increase.

In x2 > 0, the character of the interfacial wave and the transmitted wave am-
plitudes |R∗| and |R∗′ | is different (against different stretches).

For the grazing incidence ( θ = 0 ), from Eq. (31) we have

(35) t∗2 = λ2(λ2 − 2),

which shows that t∗2 is positive when λ >
√

2 and negative for λ <
√

2. In
Figs. 5(a-b) and Figs. 6(a-b) notice that |R∗| 6= 0 but |R∗′ | = 0 when λ <

√
2

contrary to the results in Fig. 5(c-d) and Figs. 6(c-d) when λ >
√

2. In general the
change in the amplitudes |R∗| and |R∗′ | for λ <

√
2 and λ >

√
2 must be noted.

The graphical results show the general character of the effect of pure shear on
the reflection and transmission of plane waves at the boundary of two half-spaces
(corresponding to different strain-energy functions).
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Figure 3. Plots of |R| (reflected wave amplitude in x2 < 0 )
against θ ( 0 ≤ θ ≤ π/2) with the following values of λ:
(a) 0.6, (b) 1.4, (c) 1.9, (d) 2.8.
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Figure 4. Plots of |R′| (Interfacial wave amplitude in x2 < 0 )
against θ ( 0 ≤ θ ≤ π/2) with the following values of λ: (a) 0.6,
(b) 1.4, (c) 1.9, (d) 2.8.
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Figure 5. Plots of |R∗| (Transmitted wave amplitude in x2 > 0 )
against θ ( 0 ≤ θ ≤ π/2) with the following values of λ: (a) 0.6,
(b) 1.4, (c) 1.9, (d) 2.8.
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Figure 6. Plots of |R∗′ | (Interfacial wave amplitude in x2 > 0 )
against θ ( 0 ≤ θ ≤ π/2) with the following values of λ: (a) 0.6,
(b) 1.4, (c) 1.9, (d) 2.8.

6. Conclusions

Since the angle of incidence θ is real, using first two equations in Eq. (34),
the amplitudes of the reflected and interfacial waves are increasing smoothly (in
x2 < 0 ) by increasing the stretch as shown in Figs. (3-4).

As described in Section 5, at θ = 0, t∗ = tan θ∗ is real for λ >
√

2 from
Eq. (35). Keeping this in view, the incident wave is not transmitted, as illustrated
in Figs. 5(c-d). Do notice that interfacial wave is generated (in x2 > 0 ) as shown
in Figs. 6(c-d) for λ >

√
2.

Similarly θ∗ is an imaginary angle from Eq. (35) for λ <
√

2. Therefore the
behavior of |R∗| (|R∗′ |) at θ = 0 for λ <

√
2 in Figs. 5(a-b) and Figs. 6(a-b)

respectively, is similar to that of |R∗′ | (|R∗|) at θ = 0 for λ >
√

2, as graphically
shown in Figs. 6(c-d) and Figs. 5(c-d) respectively.

By comparing with the experimental data, the results described here, provide
theoretical basis for characterization of material properties of rubber like solids i.e.
stretches, strain-energy functions and elastic moduli. One can picture situations
of practical interest where a solid is stretched and sheared: for instance, a rubber
isolator under a bridge is subjected to vertical compression and then is sheared as
a result of thermal extensions and contractions of the roadway.
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The method and the results presented in the paper can be extended to the wave
propagation problem by interchanging the strain-energy functions of two half-spaces
i.e.

2β 6= α + γ (x2 < 0), and 2β = α + γ (x2 > 0).
With reference to Fig. 1 problem would be similar i.e. there will be one reflected

wave, one transmitted wave along with two interfacial waves but according to the
Fig. 2, (in addition to Fig. 1 option) there might be two reflected waves (in x2 < 0)
with two interfacial waves (in x2 > 0 ) with no transmitted wave for a certain
range of the angle of incidence. Propagation of two interfacial waves (in the upper
half-space), to best of the knowledge of author, never appeared in linear elasticity!

Another possible extension is to study the reflection and transmission of waves
in unconstrained (compressible) elastic solids. See, for example [3], where reflection
of plane waves from the boundary of a pre-stressed compressible elastic half-space
is studied.
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