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ABSOLUTELY SUMMING OPERATORS IN m1(l1)

NAIM L. BRAHA

Abstract. A scalar sequence (ai) is said to be a p-multiplier of a Banach

space X, if it satisfies the following condition:

mp(X) =

(
a = (ai) :

X
i

‖aixi‖p < ∞, ∀(xi) ∈ lw
p(X)

)
.

In this paper we will prove the following: every bounded linear operator from

Banach space l1 into m1(l1), is an absolutely summing operator.

1. Introduction

The theory of absolutely summing operators has as a starting point from the
famous resume of Grothendick [5], in which it was proved that every bounded lin-
ear operator from Banach space l1 into l2 is an absolutely summing operator. In
later works by Pietsch necessary and sufficient conditions are given under which
an operator is an absolutely summing operator; see [4], [6]. In this context the
absolutely summing operators were studied in the sequence spaces and function
spaces by several authors; see [4] for further references.The sequence space m1(l1)
was defined by the authors S. Aywa and J. H. Fourie in [2]. In this paper we prove
that every bounded linear operator from Banach space l1 into space m1(l1), is an
absolutely summing operator. We also prove that every bounded linear operator
from Banach space l1 into m1(X) is an absolutely summing operator, after taking
in consideration the definition of the 1-colacunary sequences given in [1] and their
properties. Also we give a result which characterizes the absolutely summing op-
erators from space m1(X) into l2, in case where X contains a basis which satisfies
the 1-colacunarity.

2. Preliminaries

In the first part of the paper we will prove that every bounded linear operator
from Banach space l1 into m1(l1), is an absolutely summing operator. In the
second part we will prove the following: If X contains a basic and 1-colacunary
vector sequence (xi), then every bounded linear operator from l1 into m1(X) is an
absolutely summing operator. In the sequel we will briefly describe the notation
and definitions which are used throughout the paper.

Let Λ denote the vector space of scalar sequences (ai), where (ai) are from R or
C, i.e.,

Λ = {a = (ai) : ai ∈ R or ai ∈ C}.

Received by the editors August 8, 2006 and, in revised form, February 15, 2007.
2000 Mathematics Subject Classification. Primary 47B10,47B37; Secondary 47B38.

Key words and phrases. scalar sequences, absolutely summing operators.

c©2007 Aulona Press (Alb. Jour. Math.)

57



58 NAIM L. BRAHA

The space mp(X), is defined as follows

(1) mp(X) =

{
a = (ai) ∈ Λ :

∑
i

||aixi||p < ∞,∀(xi) ∈ lw
p(X)

}
,

and is a Banach space under the norm

||(ai)||p,p = sup
εp((xi))≤1

(∑
n∈N

|an|p||xn||p
) 1

p

,

where εp((xi)) = sup||a||≤1 ||a(xi)||p, a ∈ X∗ (see [2]).
By lw

p(X) we will denote the Banach space

lw
p(X) =

x = (xi) ∈ X :

(∑
i

|x∗(xi)|p
) 1

p

< ∞, x∗ ∈ X∗

 .

For the class of the scalar sequences mp(X), the following inclusion holds

lp ⊆ mp(X) ⊂ l∞,

for any 1 ≤ p ≤ ∞.

Definition 1. Let X be a Banach space. A sequence (xn)n∈N in X is p-colacunary
if there is a δ > 0 such that∥∥∥∥∥∥

∑
i≤n

aixi

∥∥∥∥∥∥ ≥ δ

∑
i≤n

|ai|p
 1

p

,

for any sequence of scalars a0, a1, · · · , an.

The following theorem is proved in [5],[6].

Theorem 1. Every bounded linear operator defined from Banach space l1 into space
l2, is an absolutely summing operator.

The next result is known as the ”Ideal property of p-summing operators”; see
[4] for details.

Theorem 2. Let 1 ≤ p < ∞ and v ∈ Πp(X, Y ). Then the composition of v with
any bounded linear operator is p-summing.

3. Results

Theorem 3. Every bounded linear operator from Banach space l1 into Banach
space m1(l1), is an absolutely summing operator.

Proof. From the facts mentioned above, in order to prove the Theorem, it is enough
to prove the fact that the Banach space m1(l1), is a subspace of the space l2 and the
norm in m1(l1) is equivalent with the standard norm given in l2. Let us consider
that a = (ai), is any scalar sequence from space m1(l1),

(2) m1(l1) =

{
a = (ai) ∈ Λ :

∑
i

||aixi|| < ∞,∀(xi) ∈ lw
1(l1)

}
.
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Let us denote by (ei) the standard unit vector basis in l1, and let us define the
operator A from l1 into l1, by the following relation:

A : x =
∑

i

biei →
∑

i

aibiei,

for any sequence (ai) ∈ m1(l1). The above operator is well defined, because (aibi) ∈
l1. Indeed, from the above it was shown that m1(l1) ⊂ l∞ and from this follows
that the following relation is true,∑

i

|ai · bi| ≤ sup
i
|ai|
∑

i

|bi| < ∞.

We have

||Ax|| =

∥∥∥∥∥A
(∑

i

bi · ei

)∥∥∥∥∥ =

∥∥∥∥∥
(∑

i

bi · ai · ei

)∥∥∥∥∥
=
∑

i

|bi · ai| ≤ sup
i
|ai| ·

∑
i

|bi|

= sup
i
|ai| ·

∥∥∥∥∥∑
i

bi · ei

∥∥∥∥∥ = sup
i
|ai| · ||x||.

Thus, it follows that the operator A is a bounded linear operator. Hence, we
have

(3)
∑
i∈N

||A(aixi)|| ≤ S
∑
i∈N

||aixi|| < ∞,

where S = supi |ai| for any (ai) ∈ m1(l1) and (xi) ∈ l1. Without loss of gener-
ality we can assume that the sequence of vectors (xi) is normalized. Taking in
consideration the relation (3) we have:∑

i∈N
||A(aixi)|| =

∑
i∈N

|ai| · ||A(xi)|| =
∑
i∈N

|ai| · ||aixi|| =
∑
i∈N

ai
2 < ∞.

The last relation proves that (ai) ∈ l2. Next, we aim to prove that the norm
||(ai)||1,1 is equivalent with ||(ai)||l2 . Let (ai) ∈ m1(l1). Then

||(ai)||1,1 = sup
ε1((xi))≤1

∑
n∈N

|an| · ||xn|| ≤ sup
n
|an| sup

ε1((xi))≤1

∑
n∈N

||xn|| ≤

(∑
n∈N

|an|2
) 1

2

·N = N · ||(an)||l2 ,(4)

∀(xn) ∈ lw
1(l1). From Schur’s l1–theorem (see [4] for details) it follows that

N = sup
ε1((xi))≤1

∑
n∈N

||xn|| < ∞.

Take (ai) ∈ l2 and consider that
∑n

i=1 ai
2 = 1. Then, from Dvoretzky-Rogers

theorem it follows that there exists an unconditional sequence (yn) ∈ l1, such
that ||yn||l1 = |an|; see [6] for details. From unconditionality of (yn), we have
that

∑
i∈N θiyi < ∞, for any sequence of signs (θi) (see [6, Prop.1, c.1]), respec-

tively
∑

i∈N |yi| < ∞, from which follows that it converges
∑

i∈N |y∗(yi)| < ∞ and
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i∈N |ai| · ||yi|| =

∑
i∈N |ai|2 < ∞. Which means that the relation

sup
ε1(yi)≤1

∑
n∈N

|an| · ||yn||,

defines a norm ||(ai)||1,1 on m1(l1). Now we have the estimation,

||(an)||l2 =

(∑
n∈N

|an|2
) 1

2

=

(∑
n∈N

|an| · ||yn||

) 1
2

≤

(
sup

ε1((yi))≤1

∑
n∈N

|an|||yn||

) 1
2

≤ ||(an)||1,1.(5)

From relations (4) and (5) it follows that the norms ||(ai)||l2 and ||(ai)||1,1 are
equivalent. This completes the proof.

�

Proposition 4. Let (xn)n∈N be a basic and 1-colacunary sequence of vectors in a
Banach space X.Then every bounded linear operator T from l1, into m1(X), is an
absolutely summing operator.

Proof. Let (xn), be a 1-colacunary sequence of vectors in Banach space X, then
there follows the following relation

δ ·
∑
i≤n

|ai| ≤

∥∥∥∥∥∥
∑
i≤n

aixi

∥∥∥∥∥∥ ≤
∑
i≤n

|ai|,

which means that sequence of vectors (xn) is equivalent with standard unit vector
basis of l1. The rest of the proof is similar to that of Theorem 3.

�

Theorem 5. Let (xn)n∈N be a basic and 1-colacunary sequence of vectors in a
Banach space X. Then every bounded linear operator T from m1(X), into l2, is an
absolutely summing operator.

Proof. Let us denote by (fi) the basic sequence in Banach space m1(X), and let
(xi) be a basic and 1-colacunary sequence of vectors in X. Then,∥∥∥∥∥∥

∑
i≤n

aixi

∥∥∥∥∥∥ ≥ δ
∑
i≤n

|ai|,

for any finite sequence of scalars a0, a1, · · · , an. From this relation it follows that

(6) δ ·
∑
i≤n

|ai| ≤

∥∥∥∥∥∥
∑
i≤n

aixi

∥∥∥∥∥∥ ≤
∑
i≤n

|ai|,

for any sequence of scalars a0, a1, · · · , an. Let A be an operator defined from l1 into
m1(X), by the relation

A : x =
∑

i

aiei →
∑

i

aifi,
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where (ei) is the standard unit vector basis in l1. The operator A is well defined.
Next, we prove that A is bounded from the upper side, lower side, and bijective,
from which it follows that it has bounded inverse A−1; see [8]. We have

||Ax|| =

∥∥∥∥∥A
(∑

i

aiei

)∥∥∥∥∥ =

∥∥∥∥∥∑
i

aifi

∥∥∥∥∥ = ‖(ai)‖m1(X)

= sup
ε1((yi))≤1

(∑
n

|an|1 · ||yn||1
)
≤

sup
ε1((yi))≤1

sup
n
||yn|| ·

∑
n

|an| = M ·

∥∥∥∥∥∑
i

aiei

∥∥∥∥∥
l1

= M · ||x||,

where (yi) ∈ lw
1(X) and M = supε1((yi))≤1 supn ||yn||. In the similar way we can

prove the lower bound of ||Ax||. In the following, it is enough to prove that A is
onto (because injectivity follows from the definition). Let y = (ci) ∈ m1(X) be any
element from that space, then it is enough to prove that there follows∑

i

|ci| < ∞.

Relation (6) is true for any scalar sequence (ai), so it remains true if we are using
the scalar sequence (ci), instead (ai) i.e., the following relation is valid∑

i

|ci| ≤
1
δ
·

∥∥∥∥∥∑
i

cixi

∥∥∥∥∥ ≤ 1
δ
·
∑

i

||cixi|| < ∞.

This proved that A is a bijective operator with bounded inverse. The following
diagram is commutative

l1

C
""EE

EE
EE

EE
EE

A // m1(X)

T

��
l2

Let C denote the operator which is the composition of the operators A and T , i.e.,

(7) C = T ·A.

The operator C is a bounded linear operator from Banach space l1 into space l2, so
it is absolutely summing operator between them (Theorem 1). Then from relation
(7) we will have that C · A−1 = T . From Theorem 2, follows that the operator T
is also an absolutely summing operator.

�

The proof of the following Proposition is similar to that of Proposition 10 in [3].

Proposition 6. Let (xn)n∈N be a basic and 1-colacunary sequence of vectors in X.
Then every infinite dimensional subspace Y of m1(X) is isomorphic to m1(X) and
complemented in m1(X). Hence, the Banach space m1(X) is a Prime space.

Proof. Let H be an operator defined from the Banach space m1(X) into the space
l1 by the relation

H : x =
∑

i

aifi →
∑

i

aiei,
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where (fi) and (ei), are basic sequences in m1(X), l1 respectively. This operator is
invertible (exactly as operator A in Theorem 4). Let Y be any infinite dimensional
subspace of m1(X). Let us denote by Y1 = H(Y ), the subspace of l1. From the
decomposition method of Pelczynski it follows that

l1 = Y1 ⊕B

for some Banach space B; see [7]. Let x ∈ m1(X). Then H(x) = y ∈ l1 and y has
unique representation

(8) y = a + b

for suitable a ∈ Y1 and b ∈ B. From this there is a a1 ∈ Y, H(a1) = a,

y = H(a1) + b ⇒ H−1(y) = H−1(H(a1)) + H−1(b) ⇒

(9) x = a1 + H−1(b)

and the last representation of x is unique. If we use another representation of x we
will have x = a

′

1 + H−1(b
′
), then H(x) = H(a

′

1) + b
′ ⇒

(10) y = H(a
′

1) + b
′
.

But relation (10) is in contradiction with relation (8). So every x ∈ m1(X) has
unique representation through space Y, and we can use the notation

m1(X) = Y ⊕ C

for some Banach space C, with Y isomorphic to m1(X). Thus, H(Y ) = Y1 is
isomorphic to l1. Let us denote by B that isomorphism between them. Then B(l1) =
BH(m1(X)) = Y1 ⇒ BH(m1(X)) = H(Y ) and from this follows that H−1 ·B ·H
is isomorphism between spaces m1(X) and Y . This completes the proof.

�

Corollary 7. The space m1(l1) is a Prime space.
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Prishtinë, 10 000,, University of Prishtina, Prishtina, Kosova.


