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Abstract. In this paper we examine curves defined over a field of charac-

teristic 2 which are (Z/2Z)2-covers of the projective line. In particular, we
determine which 2-ranks occur for such curves of a given genus and where

possible we give explicit equations for such curves. As a corollary, we show
that there exist hyperelliptic curves of genus g and 2-rank σ which contain an

additional involution in their automorphism group if and only if g ≡ σ (mod

2).

1. Introduction

There are many ways to stratify the moduli space of curves. When working
over an algebraically closed field of characteristic p > 0, one of the most natu-
ral stratifications comes from looking at the p-ranks of the curves. The p-rank
of a curve X (or, more precisely, the p-rank of its Jacobian) can be defined as
dimFp Hom(µp, Jac(X)) where µp is the kernel of Frobenius on Gm. In particular,
curves of p-rank σ will have precisely pσ distinct p-torsion points on their Jacobian
defined over k.

It follows from [3] in characteristic p > 2 and [10] in characteristic 2 that there
exist curves of each possible 2-rank for every genus. In this note, we investigate
what one can say about the 2-ranks of curves which have multiple copies of Z/2Z
in their automorphism group. More precisely, we consider curves defined over an
algebraically closed field of characteristic p = 2 which admit an action of (Z/2Z)2

and such that their quotient by this action is P1.
In Section 2 of this paper, we introduce notation and recall some results from [3]

and [4] about Klein-four covers of the projective line. We also recall some results
from the theory of Artin-Schreier covers that will be used to compute the genera
and 2-ranks of the relevant curves. Section 3 is concerned with some nonexistence
results, and we prove a number of results about the necessary conditions for a
given 2-rank to occur. In the fourth section, we prove that the necessary conditions
proven in Section 3 are in fact sufficient, and in particular we prove (a stronger
version of) the following theorem.
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Theorem 1.1. Let g ≥ 0 and 0 ≤ σ ≤ g. Then there exists a curve X with
G ∼= (Z/2Z)2 ⊆ Aut(X) and X/G ∼= P1 such that X has genus g and 2-rank σ
unless σ = g − 1 or unless g is even and σ = 1.

It will follow from the constructions of these curves that they are all defined
over the finite field F4 and in most cases they can be chosen to be defined over F2.
However, it will not always be the case that the 2-torsion points are themselves
defined over F4.

We also relate our results to a result of Zhu in [10] which shows that there
exist hyperelliptic curves of every possible 2-rank with no extra automorphisms.
The following theorem shows precisely when a hyperelliptic curve can have extra
involutions.

Theorem 1.2. There are hyperelliptic curves of genus g and 2-rank σ which contain
an additional involution in their automorphism group if and only if g ≡ σ (mod 2).

Acknowledgements: The author would like to thank R. Pries for many useful
conversations.

2. Notation

In this article, we work over an algebraically closed field k of characteristic p = 2.
We wish to examine curves that are (Z/2Z)2-covers of the projective line P1

k. In [3],
we examined such curves defined over algebraically closed fields of characteristic
p > 2 and in particular we used such curves to construct hyperelliptic curves with
particular group schemes arising as the p-torsion of their Jacobians. When the
characteristic of k is not equal to two, this Hurwitz space of such covers is well-
defined (for details, see the results of Wewer in [9]) and in [3] we denoted the moduli
space of genus g curves which are (Z/2Z)2-covers of P1 by Hg,2. However, when
the characteristic of k is equal to two we are in the situation of wild ramification,
and Wewer’s results do not hold. In particular, it is not clear whether Hg,2 will be
well-defined as a smooth moduli space due to the wild ramification.

From now on, X will be a k-curve of genus g and 2-rank σ which is a (Z/2Z)2-
cover of P1. Let H1, H2, and H3 be the three subgroups of (Z/2Z)2 with respect to
a fixed basis. Furthermore, let C1, C2, and C3 be the three quotient curves of X by
these subgroups. Finally, we define gi to be the genus of Ci and σi to be the 2-rank
of Ci. By results of Kani and Rosen in [5], Jac(X) ∼

∏
Jac(Ci) and therefore it

follows that gX = g1 + g2 + g3 and σX = σ1 + σ2 + σ3. We note that X can be
viewed as the normalization of the fibre product of any pair of the Ci, and if the
Ci are defined over F2 then X will be defined over F4. Throughout this paper, we
will use α to denote one of the elements of F4 other than one or zero.

The fact that we have wild ramification restricts some of the information we can
learn from this situation, but there is more that we can say. In particular, we know
that C1, C2, and C3 must be Artin-Schreier covers, and therefore can be put into
the form Ci : y2 + y = fi(x) where fi is a rational function in xk(x2). In this
case, it follows from results of van der Geer and van der Vlugt in [8] that the third
quotient is of the form y2 + y = f3(x) where f3(x) = f1(x) + f2(x).

Given a cover of curves X → Y , their genera are related by the Riemann-Hurwitz
formula (see [7] for details) and if the Galois group is a p-group then their p-ranks
are related by the Deuring-Shafarevich formula (see [1] for details). In particular,
if the characteristic of k is two and we have a Z/2Z-cover X → Y branched at j
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points then the Riemann-Hurwitz formula says that the genera of X and Y are
related by the formula gX = 2gY − 1 + r

2 where r is the degree of the ramification
divisor. It follows immediately that gY ≤ gX+1

2 . The Deuring-Shafarevich formula
further says that σY = 2σX − 1 + j. The following results about the genus and
2-rank of Artin-Schreier curves in characteristic two follow immediately and will be
used throughout this note without reference.

Theorem 2.1. Let y2 + y = f(x) define a hyperelliptic curve C in characteristic
two. Let f(x) have j poles given by x1, . . . , xj and let ni be the order of the pole at
xi. Without loss of generality we can assume that all of the ni are odd. Then the
genus of C is given by the formula −1 + 1

2

∑
(ni + 1) and the 2-rank of C is given

by j − 1.

To conclude this introduction we define the K-type of a Klein-four cover X → P1

to be the unordered triple p = {g1, g2, g3} consisting of the genera of the three
Z/2Z quotients of X. In particular, it follows that the gi are integers such that
0 ≤ gi ≤ g+1

2 and g1 + g2 + g3 = g, so that p is a partition of g. We define
a partition p – and by extension the K-type of a curve – to be unbalanced if it
contains an element which is at least g

2 . In particular, unbalanced partitions are
of the form { g

2 , g1, g2} or { g+1
2 , g1, g2} depending on the parity of g. Note that if

0 ∈ p it follows immediately that p is unbalanced. On the other extreme, a totally
balanced partition is when in which all three elements are the same, and therefore
p = { g

3 , g
3 , g

3}.
We note that the K-type of X is technically the type of the cover X → P1, and

in a small number of cases a curve X can be considered a (Z/2Z)2-cover of P1 in
more than one way leading to different types. However, we show in [4] that this is
rare in characteristic p 6= 2 (and happens exactly in the case where 1 ∈ p). While
not stated in that paper, the proof also works in characteristic 2.

3. Nonexistence Results

Throughout this section, X will be (Z/2Z)2-cover of P1 with 2-rank equal to σ
and with K-type p. We will give necessary conditions on σ and p in order for such
a curve X to exist. Recall that a curve is said to be almost-ordinary if it has 2-rank
equal to g − 1.

Lemma 3.1. The 2-rank of X cannot equal g − 1.

Proof. Assume X is almost-ordinary. It follows that one of its Z/2Z quotients
must be almost-ordinary and the other two must be ordinary. Let C1 and C2

be the two quotients which are ordinary so that C1 (resp. C2) is defined by the
equation y2 + y = f1(x) (resp. f2(x)) where f1 (resp. f2) only has simple poles.
Then f1 + f2 must also have only simple poles and therefore the curve C3, which is
defined by y2+y = f1(x)+f2(x), must also be ordinary. This gives a contradiction.

�

In some cases it happens that a given 2-rank can occur for curves of some K-types
but not for curves of other K-types, as the following results indicate.

Lemma 3.2. If σ = 0 then p = {g1, g1, g3} where g1 ≥ g3.

Proof. Assume X is a curve with 2-rank equal to zero. It follows that all three of
the hyperelliptic quotients have 2-rank zero and therefore they can each be defined
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by y2 + y = fi(x) where each fi has a single pole at the same point. It follows
that (at least) two of these three functions must have a pole of the same order and
that the order of the third pole is no larger than these two, and therefore the same
statement can be made about the genera.

�

Lemma 3.3. If σ = 1 then g is odd and p = { g+1
2 , g2, g3} is unbalanced.

Proof. Assume that σ equals 1. Then two of the hyperelliptic quotients must have
2-rank zero while the third has 2-rank one. It follows without loss of generality
that f1 has a pole of order a at one point and f2 has a pole of order b at another
point where a and b are both odd. In that case we can compute that the curve X
is of type {a−1

2 , b−1
2 , a+b

2 } which in turn implies that the genus of the curve X is
a + b− 1 (and is thus odd) while the genus of the curve C3 is a+b

2 = g+1
2 .

�

A quite different result holds if we look at curves with 2-rank equal to 2.

Lemma 3.4. If σ = 2 then p 6= {g1, g1, g1}.

Proof. Assume X is a curve whose 2-rank is equal to 2. Let C1, C2, and C3 be the
three quotient curves and let σi be the 2-rank of Ci. Then it follows without loss
of generality that either σ1 = 2 and σ2 = σ3 = 0 or σ1 = σ2 = 1 and σ3 = 0.
However, the first case cannot happen, because it would imply that f1 would have
3 poles while each of f2 and f3 would have a unique pole.

Therefore we must be in the second case, in which f1 and f2 each have two poles
and f3 has one pole. We can assume that f1 and f2 each have poles at zero which
cancel each other out and poles at infinity and that f3 has a pole only at infinity.
Without loss of generality, we may assume that ord∞(f1) ≥ ord∞(f3) which will
in turn imply that g1 > g3. Therefore, p cannot be a totally balanced partition.

�

Lemma 3.5. If p is unbalanced then g ≡ σ (mod 2).

Proof. If g is odd and g+1
2 ∈ p then there exists an involution τ ∈ Aut(X) such

that the genus of C1 = X/ < τ > is equal to g+1
2 . It follows from the Riemann-

Hurwitz formula that the cover X → C1 must be étale. Therefore, if we apply the
Deuring-Shafarevich formula to X → C1 we see that σX = 2σC1 − 1 is odd.

Similarly, if g is even and g
2 ∈ p then it follows from the Riemann-Hurwitz

formula that the cover X → C1 must be ramified at a single point. Again, it will
follow from the Deuring-Shafarevich formula that σX = 2σC1 must be even.

Therefore, in both cases where we look at curves whose K-types are unbalanced
we see that σX ≡ gX (mod 2).

�

4. Existence Results

The main result in this section is that the necessary conditions on σ and p which
were shown in the previous section are also sufficient. In particular, we will prove
the following theorem.

Theorem 4.1. There exist curves of genus g, 2-rank σ, and K-type p under the
following conditions:
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(1) σ 6= g − 1.
(2) If σ = 0 then p = {g1, g1, g3} with g3 ≤ g1.
(3) If σ = 1 then g+1

2 ∈ p.
(4) If σ = 2 then p 6= {g1, g1, g1}.
(5) If p is unbalanced, then g ≡ σ (mod 2).

We will prove this theorem by induction on σ after looking at some base cases.
In particular, we will use the following inductive lemma which says that if Theorem
4.1 holds for σ then it is almost immediate that it will hold for σ + 3.

Lemma 4.2. If there exists a curve X of genus g, 2-rank σ and K-type p =
{g1, g2, g3} then there exists a curve X̃ of genus g + 3 and 2-rank σ + 3 which has
K-type p̂ = {g1 + 1, g2 + 1, g3 + 1}.

Proof. Assume that the three hyperelliptic quotients of X are defined by the equa-
tions y2 + y = fi(x), where without loss of generality we may assume that none
of the fi have poles at infinity. Then we define f̃1 = f1 + x, f̃2 = f2 + αx and
f̃3 = f3 + (α + 1)x where α is one of the elements of F4 other than one or zero.
It is clear that f̃3 = f̃1 + f̃2 and that the curve X̃ defined by the fibre product of
y2 + y = f̃1(x) and y2 + y = f̃2(x) will have the desired properties.

�

We begin proving the necessary base cases by showing that Theorem 4.1 is true
for small values of σ.

Lemma 4.3. Let p = {g1, g1, g3} with g3 ≤ g1. Then there exist curves of K-type
p and 2-rank σ = 0.

Proof. Let a = 2g1 + 1 and b = 2g3 + 1 and define f1 = xa and f3 = xb so that
f2 = f1 + f3 = xa + xb. Then the curves defined by y2 + y = fi(x) all have 2-rank
equal to zero, and the genera of the curves y2 + y = f1(x) and y2 + y = f2(x)
will each be g1 while the genus of the curve defined by y2 + y = f3(x) will be g3.
Our construction now shows that the relevant fibre product will have the desired
properties. �

Lemma 4.4. Let g be odd and let p be an unbalanced partition (ie g+1
2 ∈ p). Then

there are curves X of genus g and K-type p with 2-rank equal to one.

Proof. Let p = { g+1
2 , g2, g3} and define a = 2g2 + 1 and b = 2g3 + 1. The curve C2

defined by y2 + y = xa will have genus g2 and 2-rank equal to 0 and the curve C3

defined by y2 +y = 1
xb will have genus g3 and 2-rank equal 0. If we look at the fibre

product of C2 and C3, it will be a (Z/2Z)2-cover of P1 and the third hyperelliptic
quotient C1 will be defined by the equation y2 + y = xa + 1

xb . In particular, the
genus of C1 will be g1 = a+b

2 = g2 + g3 + 1 = g+1
2 where g = g1 + g2 + g3 is the

genus of the fibre product C. Similarly, we see that the 2-rank of C is equal to one
as desired.

�

Lemma 4.5. Let p be a partition which is neither completely balanced or, if g is
odd, unbalanced. Then there exist curves of K-type p and 2-rank equal to two.

Proof. Let p = {g1, g2, g3} with g1 ≥ g2 ≥ g3. Let a = 2g3 + 1, b = 2(g1 − g3) − 1
and c = 2(g2 + g3 − g1) + 1. It is clear that a, b, and c are all odd, and that
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a ≥ c. Furthermore, b ≥ 1 because p is not completely balanced and c ≥ 1
because g1 ≤ g/2. If we now let f1 = xa + 1

xb and f2 = αxc + 1
xb we see that

f3 = f1 + f2 = xa + αxc and a simple computation shows that the fibre product X
will have 2-rank equal to 2 and K-type p.

�

Note that in all of the above situations, the case of σ = g−1 is eliminated. Next,
we show that the necessary condition on the 2-ranks of curves with unbalanced K-
types from Theorem 3.5 is actually sufficient.

Lemma 4.6. For any unbalanced partition p, there will be curves of K-type p and
2-rank σ as long as g ≡ σ (mod 2).

Proof. In order to prove this lemma we must show that there are curves of K-type
p = { g

2 , g1, g2} for all even 2-ranks and curves of K-type p = { g+1
2 , g1, g2} for all

odd σ.
We first consider the case when g is odd and p is unbalanced, so that p =

{ g+1
2 , g1, g2} with g1 ≥ g2. We note that we can construct hyperelliptic covers

C1 → P1 and C2 → P1 so that the genus of Ci is gi and the 2-rank of Ci is ki

for all 0 ≤ ki ≤ gi. Furthermore, after modifying C → P1 by a projective linear
transformation of P1, one can assume that the branch loci of the two covers are
distinct. If we let X be the fibre product of C1 and C2 and consider the third
hyperelliptic quotient of X we see that it will have genus g1 + g2 + 1 and 2-rank
k1 + k2 + 1. If we choose k1 and k2 so that k1 + k2 = k then X will have 2-rank
equal to σ and K-type p.

Next, we will construct a curve with 2-rank equal to 2m and K-type { g
2 , g

2 , 0}.
We first note that we can find a hyperelliptic curve of genus g

2 with 2-rank equal
to m for 0 ≤ m ≤ g

2 . Let us assume that this curve C1 is defined by the equation
y2 + y = f1(x) where f1 has a pole at infinity. Let f2 be some constant multiple
of x so that f3 = f1 + f2 will have the same poles (with the same orders) as f1.
Note that if the order of the pole of f1 at ∞ is greater than one then we can choose
this constant multiple to simply be x. If ord∞(f1) = 1 then we need to choose a
multiple so that f3 still has a pole at infinity, but we are guaranteed a choice of
this multiple defined over F4. It follows from our construction that the curve X
will have 2-rank 2k and the desired K-type.

Finally, we consider the case where p = { g
2 , g1, g2} with g1 and g2 both positive

and we wish to show that there will be curves of all even 2-ranks. We note that
p̂ = { g

2 − 1, g1 − 1, g2 − 1} gives an unbalanced partition of g − 3. We may assume
that σ ≥ 4 (the case σ = 0 was handled in Lemma 4.3 and the case of σ = 2 was
taken care of by Lemma 4.5), so σ−3 will be a positive odd number. In particular,
the above argument shows that there exists a curve X̂ of K-type p̂ and 2-rank σ−3.
The conclusion now follows from Lemma 4.2.

�

For all σ ≥ 3, Theorem 4.1 says that there are no restrictions other than this
parity condition for unbalanced K-types and the case where σ = g − 1. We now
show this concretely for σ = 3, 4, and 5.

Lemma 4.7. If σ = 3 then Theorem 4.1 holds. In particular, there are curves of
2-rank equal to three of all K-types except the case where g is even and g

2 ∈ p.
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Proof. If g is odd and p is unbalanced then the result follows from Lemma 4.6.
Therefore, it suffices to consider the case where p = {g1, g2, g3} with 1 ≤ g3 ≤ g2 ≤
g1 ≤ g−1

2 . Set a = 2(g1 − g3) + 1, b = 2g3 − 1 and d = 2(g2 + g3 − g1)− 1. We note
that our hypotheses imply that a, b, and d are all odd positive numbers with b ≥ d.
Now, let f1 = xa + α

xb , f2 = xa + 1
xd and f3 = f1 + f2. Then the curve defined by

y2 + y = fi will have genus gi and 2-rank equal to one, and therefore X will be a
curve of 2-rank equal to three.

�

Lemma 4.8. If σ = 4 then Theorem 4.1 holds. In particular, there are curves of
2-rank equal to four of all K-types except the case where g = 5 or when g is odd
and g+1

2 ∈ p.

Proof. Assume that p = {g1, g2, g3} where g1 > g2 ≥ g3. Let a = 2g2 − 1, b =
2(g1 − g2) − 1, and c = 2(g2 + g3 − g1) + 1. One can easily check that a, b, and c
are all positive odd numbers as the fact that g+1

2 6∈ p implies that g1 ≤ g2 + g3.
Furthermore, we see that a ≥ c. Let f1 = xa + 1

xb + 1
x+1 , f3 = xc + 1

xb , and
f2 = f1 + f3. Then the curve defined by the equation y2 + y = fi(x) has genus gi

and the fibre product X will have genus g and 2-rank σ = 4 as desired.
On the other hand, assume that g1 = g2 ≥ g3 ≥ 2. In this case, let a = 2g1 − 1

and b = 2g3 − 3. Then it is clear that a and b are positive odd integers with a > b.
If we define f1 = xa + 1

x and f3 = xb + 1
x + 1

x+1 we can see that the curves will
have the desired properties.

For the partition p = { g
2 , g

2 , 0} the lemma follows from Lemma 4.6, so it suffices
to consider the case where g is odd and p = { g−1

2 , g−1
2 , 1}. We note that g 6= 5, so

we may assume that g ≥ 7. Let f1 = xg−4 + 1
x + 1

x+1 and f2 = αx. These equations
define curves with the desired genera and 2-ranks.

�

Lemma 4.9. If σ = 5 then Theorem 4.1 holds. In particular, if g ≥ 7 there are
curves of 2-rank equal to five of all K-types except the case where g = 6 or the case
where g is even and g

2 ∈ p.

Proof. Let p = {g1, g2, g3} be a partition of g with 0 ≤ g3 ≤ g2 ≤ g1 ≤ g+1
2 . We

wish to show that there are curves of K-type p and 2-rank equal to five unless
g1 = g

2 (in which case g will be even). If g1 = g+1
2 then the result follows from

Lemma 4.6.
If g1 ≤ g−1

2 then it follows that g3 > 0 and thus p̂ = {g1 − 1, g2 − 1, g3 − 1}
gives a partition of g − 3 all of whose entries are at most g−3

2 . Thus, by Lemma
4.5 there are curves of K-type p̂ of 2-rank equal to 2 unless p̂ (and therefore p) is
completely balanced. By the induction argument in Lemma 4.2 we therefore have
curves whose 2-rank is equal to five in of K-type p.

It remains to consider the case where p is totally balanced: that is, where g1 =
g2 = g3 = a > 2. To deal with this case, let f1 = xa + 1

xa and f2 = xa + 1
(x−1)a−2 +

1
x−α and f3 = f1 + f2. One can easily compute that these choices will lead to a
curve X of K-type {a, a, a} whose 2-rank is equal to 5.

�

Before proving the main theorem, there is one more base case that we need to
consider.
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Lemma 4.10. Let g be odd and g−1
2 ∈ p but g+1

2 6∈ p. Then there are curves in of
K-type p with 2-rank equal to 2m for all 0 ≤ m ≤ g−3

2 .

Proof. Let p = { g−1
2 , g1, g2} with g1 ≥ g2 > 0 and let σ = 2m be as above. Because

σ ≤ g − 3 we have that m ≤ g1 + g2 − 2 and therefore we can choose m1 and
m2 so that m1 + m2 = m but mi < gi. In particular, we can define a function
h1(x) which has m1 poles (none of which are at infinity) so that the curve C1

defined by y2 + y = x3 + h1(x) will have genus g1 and 2-rank m1. Similarly, we
can choose h2 with poles distinct from those of h1 so that the curve C2 defined by
y2 + y = αx3 + h2(x) will have genus g2 and 2-rank m2.

If we look at the normalization of the fibre product of C1 and C2 we see that the
third quotient will be defined by the equation y2 + y = (α + 1)x3 + h1(x) + h2(x)
and therefore will have genus g1 +g2−1 and 2-rank m1 +m2 = m. Thus, the curve
X has K-type { g−1

2 , g1, g2} and has 2-rank equal to 2m, as desired.
�

We are finally ready to prove Theorem 4.1.

Proof. Given the results of the above lemmata, it suffices to consider the case where
σ ≥ 6. In this case, we only need to prove that there are curves of 2-rank equal to
σ in every partition if g ≡ σ (mod 2) and that there are curves of 2 rank equal to
σ in every partition whose entries are all at most g−1

2 if g 6≡ σ (mod 2).
If 0 ∈ p then p must be unbalanced, and therefore we only need to consider the

case where g ≡ σ (mod 2). The result then follows from Lemma 4.6. Similarly, if
g+1
2 ∈ p the result follows from Lemma 4.6.
If p = { g−1

2 , g1, g2} then it follows from Lemma 4.10 that there are curves of every
even 2-rank strictly less than g−1 of K-type p. To construct the curves of odd 2-rank
σ, we note that g1 and g2 must be positive, and therefore p̂ = { g−3

2 , g1 − 1, g2 − 1}
gives an unbalanced partition of g − 3. Furthermore, g − 3 ≡ σ − 3 (mod 2) and
therefore there are curves of K-type p̂ of 2-rank equal to σ− 3 by Lemma 4.6. The
result then follows from the inductive process described in Lemma 4.2.

If all entries of p are at least 1 and at most g−2
2 , we note p̂ = {g1−1, g2−1, g3−1}

gives a partition of ĝ = g − 3 such that each ĝi = gi − 1 is at most ĝ−1
2 and

therefore there exist curves of 2-rank σ−3 and K-type p̂. By the inductive procedure
described in Lemma 4.2 we can construct a curve of K-type p with 2-rank equal to
σ, proving the theorem.

�

In [10], Zhu proves that there exist hyperelliptic curves with no extra automor-
phisms of every possible 2-rank. The following result shows that, depending on
the 2-rank, there may or may not be hyperelliptic curves that do admit an extra
involution.

Corollary 4.11. There are hyperelliptic curves of genus g and 2-rank σ which
contain an additional involution in their automorphism group if and only if g ≡ σ
(mod 2).

Proof. It is well known that the hyperelliptic involution is contained in the center
of the automorphism group of a curve (see [6] for one proof in characteristic two).
Therefore, if there is another involution in the automorphism group then we must
have a Klein-four action on the curve and therefore we will be in the setup above.



KLEIN-FOUR COVERS OF THE PROJECTIVE LINE IN CHARACTERISTIC TWO 11

Furthermore, it follows that the partition p corresponding to this curve contains a
zero and is therefore either p = { g+1

2 , g−1
2 , 0} or p = { g

2 , g
2 , 0}. In either case, the

partition is unbalanced and therefore g ≡ σ (mod 2) by Theorem 3.5.
Conversely, it follows from Theorem 4.1 that if g ≡ σ (mod 2) then there will

exist curves in this partition, which will therefore be both hyperelliptic and contain
an extra involution.

�

We note that this does not answer the question of the automorphism groups fully,
as the curves may have automorphisms of degree greater than two. We examine the
question of the possible 2-ranks of hyperelliptic curves with extra automorphisms
in depth in [2].
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