
ALBANIAN JOURNAL OF MATHEMATICS
Volume 16, Number 1, Pages 25–39
ISSN: 1930-1235; (2022)

KEYED HASH FUNCTION FROM LARGE GIRTH EXPANDER
GRAPHS

MONIKA POLAK

College of Computing & Information Sciences,
Rochester Institute of Technology,

Rochester, NY 14623, USA

EUSTRAT ZHUPA

Department of Computer Science,
University of Rochester,

Rochester, NY 14627, USA

Abstract. In this paper we present a keyed hash function (message authen-
tication code MAC). Our approach uses a family of expander graphs of large
girth denoted as D(n, q), n ∈ N≥2 and q is a prime power. Graphs D(n, q),
n ≥ 2 for arbitrary q form a family of q-regular almost Ramanujan graphs
(|λ1(Gi)| ≤ 2

√
q). Expander graphs are known to have excellent mixing prop-

erties because are very dense. The girth of this family of graphs can be descibed
by the formula gn ≥ logq(q− 1) logq−1(vn), where vn is size of graph D(n, q).
All requirements for a good MAC are satisfied in our method and a discussion
about collisions and preimage resistance is also part of this work. The out-
puts very closely approximate the uniform distribution and the results we get
appear to be indistinguishable from random sequences of bits, when tested by
statistical test suite for random and pseudorandom number generators. Based
on the tests, our graph based keyed hash functions shows good efficiency in
comparison to other techniques. The number of operations per bit of input for

DMAC-1 is given by the formula
2n+ 2

N

(
1 +

r

l(M)

)
, where r is the length

of secret key S, N is block size and l(M) is the number of blocks in a message.

1. Introduction

Our work is motivated by the work of Charles, Goren and Lauter, [7]. They
proposed the construction of collision resistant hash function from expander graphs.
The family of graphs they used were Ramanujan graphs constructed by Lubotzky,

E-mail addresses: mkp@cs.rit.edu, ezhupa@cs.rochester.edu.
1991 Mathematics Subject Classification. Primary 94C15; Secondary 94A60.
Key words and phrases. Keyed hash function, authentication, large girth graphs, expander

graphs.

©2022 Albanian Journal of Mathematics

25

http://albanian-j-math.com

Keyed hash function from large girth expander graphs 26

Philips and Sarnak (see [19]) and Pizer’s Ramanujan graphs, [24]. Hash functions
from LPS require 7 field multiplications per bit of input, but the field size may need
to be bigger (1024 bit prime p instead of 256 bits, for example), and the output is
4log(p) bits. When the hash function from Pizer’s graph G(p, l), for l = 2, requires
2log(p) field multiplications per bit of input, which is quite inefficient (the authors
propose to use a graph of cryptographic size p ≈ 2256). The output of this hash
function is log(p) bits. The idea presented in [7] is very good, but collisions for
this hash were found (see [27]). However, expander graphs can be used to produce
keyed hash function (message authentication code). When secret parameters are
involved (like colouring and initial vertex) the adversary cannot find collision with
mentioned method.

We propose a construction of message authentication code based on another
family of expander graphs D(n, q) of large girth, [17]. The most important advan-
tages are: the output can have arbitrary length (like in case of variants of SHA-3:
SHAKE128 and SHAKE256), max message size is unlimited and the performance is
very good (4 field operations per bit of input can be achieved). Another advantage
of our construction is that graphs from the family D(n, q) have a nice represen-
tation by vectors and incidence relations are described by system of multivariate
equations, which is very easy to implement. From the other side such systems of
nonlinear equations are used for multivariate cryptography that is considered to be
a good candidate for a post-quantum cryptography, [11].

The basics about hash function and keyed hash function (message authentica-
tion code; MAC) can be found in [26]. A hash function accepts a message M as
input and produces a fixed-size hash value h = H(M). Hash functions are often
used to determine whether or not data has changed. In general terms, the main
goal of a hash function is to ensure data integrity.However it can be also used for
authentication, to create one way password files, as a source of pseudorandom num-
bers (bits) or for intrusion and virus detection. A cryptographic hash function is
a function that is acceptable for security applications. It means that it shall be
computationally infeasible to find

i: a x that is the preimage of h for a given hash value h = H(x) (one way
property),

ii: two data objects x 6= y, for which H(x) = H(y) (the collision-free prop-
erty).

In addition, a good hash function has the property that the output looks like random
data and even a small change in input causes big changes in the output.

It is possible to use a hash function but no encryption for a message authenti-
cation. There are a few techniques to achieve this: use hash function + encryption
on the hash, compute a hash value over the concatenation of M and S (a common
secret value) and append the resulting hash value to the message or use keyed hash
function. There are many reasons why it is worth to use techniques that avoid
encryption [13]. For example, if there is no need to keep message confident but we
want to authenticate it, those techniques are faster.

Figure 1 illustrates the mechanism for message authentication using keyed hash
function. In order to check the integrity of the message, the keyed hash function
is applied to the message and the result is compared with the associated tag. The
secret key Ks is known for the receiver and for the sender, so the sender can be
easily verified. The MAC approach guarantees data integrity and authenticity.

Albanian J. Math.

http://archives.albanian-j-math.com

M. Polak and E. Zhupa 27

Figure 1. Message authentication using MAC

2. Background

Graphs of large girth. We define the girth of a graph as the length of the shortest
cycle. In the analyzed context girth is a very important property of the graph.
Let {Gi}i∈N be a family of k-regular graphs with increasing order. Let gi and vi
denote respectively the girth and the order of the graph Gi. A family of graphs
with increasing girth is a sequence of graphs such that gi ≤ gj for i < j. According
to the definition introduced in [2], we say that a family of k-regular graphs is a
family of graphs of large girth if

gi ≥ γ logk−1(vi)

for a constant γ and all i ≥ 1.
A nice survey about graphs of large girth is presented in [3]. It is known that

γ = 2 (see [6]) is the best possible constant, but there is no explicit construction of
such family of graphs for which it can be obtained. This topic started in 1959 when
Paul Erdős proved existence of such families with bounded degree k and γ = 1/4,
without providing a construction [8]. There have been numerous investigations of
the field by several authors. However, until 2017 the list of major known results is
short. The list of explicit constructions is the following:

(1) the first explicit construction of such family with γ = 0.44, denoted by
X(p, q), where p and q are primes was introduced by G. A. Margulis in
1982 [20],

(2) generalisation of the family X(p, q) proposed by M. Morgenstern [23],
(3) constructions for arbitrary k with γ = 0.48 and construction of family of

3-regular graphs with γ = 0.96 obtained by V. Imrich in 1983 [14],
(4) family of sextet graphs introduced in 1983 by Biggs and Hoare [5] (Alfred

Weiss [34] proved that γ = 4
3),

(5) second construction by G. A. Margulis in 1988 [21],
(6) constructions of cubic graphs, presented in a popular article [3],
(7) construction by Lubotzky, Phillips and Sarnak [19] (Biggs and Boshier [4]

proved that γ = 4
3 for this family of graphs),

(8) algebraic graphs CD(n, q) given by the nonlinear system of equations over
finite field Fq, with γ ≥ logq(q − 1), [16] (Furedi [9] proved that for arbitrary
prime power q: γ = logq(q − 1)),

(9) the polarity graphs of CD(n, q) (see [18]) has an induced subgraph of degree
q − 1 which is a family of graphs of large girth (it is shown in [32]).

(10) a new construction by G. Arzhantseva and A. Biswas [1] (finite 4-regular
graphs with gi > C log p for an absolute constant C > 0).

Expander graphs. An important property that a family of graphs must have in
order to be a good candidate for a construction of a hash function is to be a

archives.albanian-j-math.com

http://archives.albanian-j-math.com

Keyed hash function from large girth expander graphs 28

family of expander graphs. Cryptographic hash function from expander graphs
were presented in works of [7, 28,36].

Let’s consider a spectrum of a graph with eigenvalues λ0 > λ1 > ... > λs−1.
A family of k-regular graphs of increasing order {Gi}i∈N is called a family of Ra-
manujan graphs if |λ1(Gi)| ≤ 2

√
k − 1 for all i ([12], p. 452). If k is stable and

vi →∞ the limit 2
√
k − 1 is the best we can get. Ramanujan graphs are the best

expanders.

3. The family of graphs D(n, q)

The family of graphs we use in our construction of a MAC was introduced in
1992 by Lazebnik and Ustimenko, [16]. It is denoted by D(n, q), n ∈ N≥2 and q is
a prime power. The similar notations that we use appeared later and can be found
in [17]. To simplify, we don’t use double notations for coordinates of vectors. The
family D(n, q) is special because of a few important properties. The first one is that
this is a family of graphs of a large girth, as mentioned in Sec. 2. Secondly, this is
a family of very good expander graphs that are close to Ramanujan graphs. The
idea of almost Ramanujan graphs was introduced in [29]. We refer to a family of
k-regular graphs as almost Ramanujan graphs if |λ1(Gi)| ≤ 2

√
k for all i. Graphs

D(n, q), n ≥ 2 for arbitrary q form a family of q-regular almost Ramanujan graphs
(|λ1(Gi)| ≤ 2

√
q) and thus have excellent mixing properties.

Graphs D(n, q) are bipartite with set of vertices V containing two subsets: V =
P ∪L, where P ∩L = ∅. Originally the subset of vertices P is called a set of points
and another set L is called a set of lines. Let P and L be two copies of Cartesian
power Fq

n, where n ≥ 2 is a integer. Two types of brackets are used in order to
distinguish points from lines. We write (~z) if ~z ∈ P and [~z] if ~z ∈ L. The set
of vertices of graph D(n, q) (collection of points and lines) can be considered as
n-dimensional vectors over Fq:

(~p) =(p1, p2, p3, p4, ..., pn),

[~l] =[l1, l2, l3, l4, ..., ln].

Coordinates of (~p) and [~l] are elements of finite field Fq. Because of this we
have: |P | = |L| = qn and |V | = 2qn. The vertex (~p) (point (~p)) is incident with
the vertex [~l] (line [~l]) and we write: (~p)I[~l], if the following relations between their
coordinates hold:

(1)

l2 − p2 = l1p1
l3 − p3 = l2p1
l4 − p4 = l1p2
li − pi = l1pi−2
li+1 − pi+1 = li−1p1
li+2 − pi+2 = lip1
li+3 − pi+3 = l1pi+1

where i ≥ 5. The set of edges E consists of all pairs ((~p), [~l]) for which (~p)I[~l]. This is
a family of q-regular graphs, which means that each vertex has exactly q neighbors.
D(n, q) becomes disconnected for n ≥ 6. Graphs D(n, q) are edge transitive. It
means that their connected components are isomorphic. A connected component
of D(n, q) is denoted by CD(n, q). Notice that all connected components of infinite

Albanian J. Math.

http://archives.albanian-j-math.com

M. Polak and E. Zhupa 29

graph D(q) are q-regular trees. The length of the shortest cycle (the girth) of a
graph D(n, q) is given by the formula:

g(D(n, q)) =

{
n+ 5, for odd n
n+ 4, for even n

Graphs D(n, q) were successfully used as a base for symmetric and public key
multivariate cryptography (see for example: [15, 25, 31–33]), error correcting codes
(see [10]) and currently we constructed a pseudorandom number generator. The
related cryptosystems are very good candidates for post quantum cryptography and
resistant to linearization attacks. The base of our message authentication code is a
stream cipher algorithm where most of the constructions of message authentication
functions are based on block ciphers.

4. Keyed hash function

Few notations are used in this work. Let M denote the message, N the number
of bits per block of the M and by l(M) we represent the number of blocks. So
the message can be expressed as M = m. . .ml(M). We consider that the message
is written in alphabet that corresponds to elements of finite field Fq and by l(q)
we denote the number of bits needed to represent number q (for example UTF-8
uses number field F28). Calculations shall be performed in bigger number field than
the number field (Fq) that is used for the alphabet in order to achieve collection
resistance property. Let denote by FQ the number field used for calculations. The
choice ofN determines FQ. Any change in message shall change the hash so different
input blocks mi shall correspond to different edge colouring. To achieve it the
following condition shall be satisfied

Q ≥ 2N .

It is convenient to choose Q = p, where p is a prime number. In such case field
arithmetic is simply modulo p arithmetic.

From now on we denote by h the size of output (tag). The input message M
is used as direction for walking around the graph D(n,Q). We start with initial
vertex IV = ~v0, which we consider to be a point ((~v0) ∈ P). The next visited
vertex is obtained by the formula

Nt(~w = (w1, w2, . . . , wn)) = [(w1 + t)2, ∗, . . . , ∗︸ ︷︷ ︸
n−1

],

Nt(~w = [w1, w2, . . . , wn]) = ((w1 + t)2, ∗, . . . , ∗︸ ︷︷ ︸
n−1

),

where ∗ can be uniquely calculated from equations (1) (see Example 1). Recall that
D(n, q) graphs are bipartite: points cannot be incident to points and lines cannot
be incident to lines.

Example 1. Let consider graph D(6, 11) and ~w ∈ P .

N3(~w = (1, 8, 4, 2, 7, 0)) = [(1 + 3)2, ∗, ∗, ∗, ∗, ∗]

archives.albanian-j-math.com

http://archives.albanian-j-math.com

Keyed hash function from large girth expander graphs 30

NM1(v0) NM2(v1) NMl(M)(vl(M)-1) NS1(vl(M)) NSr(vl(M)+r-1)

IV=v0 v1 v2 vl(M) vl(M)+1 vl(M)+r

Figure 2. General structure of the DMAC-1

Names are assigned for ∗: [(1 + 3)2, ∗, ∗, ∗, ∗, ∗] = [5, l2, l3, l4, l5, l6]. Then

(2)

l2 − 8 = 5 · 1
l3 − 4 = l2 · 1
l4 − 2 = 5 · 8
l5 − 7 = 5 · 4
l6 − 0 = l4 · 1

where all operations are in finite field F11. The calculated neighbor of (~w) is
[5, 2, 6, 9, 5, 9].

We propose two approaches to calculate the keyed hash function based on this
family of graphs. We named the message authentication codes DMAC, because
constructions are based on family of graphs D(n, q). Keyed hash functions use
a secret, which is used to calculate the hash. We propose a secret key to be a
pair (IV, S). IV is an initial vector of length n with coordinates from Fq. S is a
password of s characters from alphabet Fq such that

s ≤ 1

2
g(D(n,Q)).

In our constructions, after all blocks mi of a message are processed, we process a
password S. The details are described in the next subsections.

4.1. Basic construction (DMAC-1). Fig. 2 illustrates the first type of proposed
DMAC’s. Steps to authenticate the message with DMAC-1:

(1) Agree secret key Ks, which is a pair (IV, S).
(2) split M in blocks mi of length N (add padding if needed)
(3) Process the message. For i = 0, . . . , l(M)− 1 do

• Characters of the block of message mi are concatenated to obtain a
number Mi.
• Calculate the vertex ~vi+1 which is incident to vertex ~vi. So, we calcu-

late the next visited vertex by using operator NMi
(vi):

NMi(~vi = (vi1, v
i
2, . . . , v

i
n)) = [(viimodn+1 +Mi)

2 mod Q, ∗, . . . , ∗︸ ︷︷ ︸
n−1

],

NMi(~vi = [vi1, v
i
2, . . . , v

i
n]) = ((viimodn+1 +Mi)

2 mod Q, ∗, . . . , ∗︸ ︷︷ ︸
n−1

),

where ∗ are calculated from equations (1). We start in vertex ~v0 that
is equal to IV .

(4) Process the password S. For a i = l(M), . . . , l(M) + r − 1 do

Albanian J. Math.

http://archives.albanian-j-math.com

M. Polak and E. Zhupa 31

NMl(M)(vl(M)-1)NM1(v0) NM2(v1) NS1(vl(M)) NSr(vl(M)+r-1)

vl(M)+rvl(M)+1vl(M)v2v1IV=v0

Figure 3. General structure of the DMAC-2

• Calculate the vertex ~vi+1 which is incident to vertex ~vi. So, we calcu-
late the next visited vertex by using operator NSi

(~vi):

NSi
(~vi = (vi1, v

i
2, . . . , v

i
n)) = [(viimodn+1 + Si)

2 mod Q, ∗, . . . , ∗︸ ︷︷ ︸
n−1

],

NSi
(~vi = [vi1, v

i
2, . . . , v

i
n]) = ((viimodn+1 + Si)

2 mod Q, ∗, . . . , ∗︸ ︷︷ ︸
n−1

),

where ∗ are calculated from equations (1). We start in vertex ~vl(M)

(the last visited vertex in step 3).

4.2. Modified construction (DMAC-2). For n ≥ 6 graphs become discon-
nected. In order to move from one component to another we can use simple modi-
fications presented in Fig. 3. A vectors addition + over FQ is added.

In this case steps to authenticate the message with message authentication code
are the same like for DMAC-1 except one additional step. Steps to authenticate
the message with DMAC-2:

(1) Agree secret key Ks, which is a pair (IV, S).
(2) split M in blocks mi of length N (add padding if needed)
(3) Process the message. For i = 0, . . . , l(M)− 1 do

• Characters of the block of message mi are concatenated to obtain the
number Mi.
• Calculate the vertex ~vi+1 which is incident to vertex ~vi. So, we cal-

culate the next visited vertex by using operator NMi
(~vi). We start in

vertex ~v0 that is equal to IV .
• Add vectors ~vi and ~vi+1 over FQ.

(4) Process the password S. For a i = l(M), . . . , l(M) + r − 1 do
• Calculate the vertex ~vi+1 which is incident to vertex ~vi. So, we cal-

culate the next visited vertex by using operator NSi
(~vi). We start in

vertex ~vl(M) (the last visited vertex in step 3).
• Add vectors ~vi and ~vi+1 over FQ.

Example 2. (A toy example) Let’s consider the following example. The alphabet
is F29. We want to calculate DMAC-2 of 15 bits (h = 15) for a message M and a
secret key Ks.

A B C D E F ... Z . , –
0 1 2 3 4 5 ... 25 26 27 28

archives.albanian-j-math.com

http://archives.albanian-j-math.com

Keyed hash function from large girth expander graphs 32

M :A–BEAUTIFUL–DAY corresponds to the vector (0, 28, 1, 4, 0, ..., 24)
S :.AY corresponds to the vector (26, 0, 24)
IV = (5, 10, 27) = ~v0

In this case l(q) = 5 bits. We shall use n that satisfies: h 6 n · l(q). Hence
n = 3. If we set N = 25 bits then each block has 5 characters and we decide to use
Q = 33554467. We use graph D(3, 33554467). We have 3 blocks (l(M) = 3) total
and the last block is padded:

m1 = (0, 28, 1, 4, 0)

m2 = (20, 19, 8, 5, 20)

m3 = (11, 28, 30, 24, 0)

(1) i = 0

~v1 = NM1
(~(v0) = [(v01 +M1)

2 mod 33554467, v12 , v
1
3]

= [(5 + 28140)2 mod 33554467, v12 , v
1
3]

= [20388284, 1278029, 6390172]

because {
v12 − 10 = 20388284 · 5
v13 − 27 = v12 · 5

~v1 := ~v1 + ~v0 = [20388289, 1278039, 6390199]

(2) i = 1

~v2 = NM2
(~(v1) = ((v12 +M2)

2 mod 33554467, v22 , v
2
3)

= ((1278039 + 20198520)2 mod 33554467, v22 , v
2
3)

= (30968786, 21891813, 29421730)

because {
1278039− v22 = 20388289 · 30968786
6390199− v23 = 1278039 · 30968786

~v2 := ~v2 + ~v1 = (17802608, 23169852, 2257462)

(3) i = 2

~v3 = NM3(
~(v2) = [(v23 +M3)

2 mod 33554467, v32 , v
3
3]

= [(2257462 + 112830240)2 mod 33554467, v32 , v
3
3]

= [14009975, 4873348, 10691714]

because {
v32 − 23169852 = 14009975 · 17802608
v33 − 2257462 = v32 · 17802608

~v3 := ~v3 + ~v2 = [31812583, 28043200, 12949176]

(4) i = 3 . . .
(5) i = 4 . . .
(6) i = 5 . . .

~v6 := (~v6 + ~v5) mod 29 = h.

Albanian J. Math.

http://archives.albanian-j-math.com

M. Polak and E. Zhupa 33

Table 1. Example n values for fixed tag size h and coding

UTF-8 UTF-16 UTF-32

h

27 = 128 bits 27 = n23 ⇒ n = 24 27 = n24 ⇒ n = 23 27 = n25 ⇒ n = 22

28 = 256 bits n = 25 n = 24 n = 23

29 = 512 bits n = 26 n = 25 n = 24

210 = 1024 bits n = 27 n = 26 n = 25

4.3. Properties of DMACs. A cryptographic hash function must work as fol-
lows: a small change in the input drastically changes the output. This is called
avalanche effect. DMAC-1 and DMAC-2 were implemented and tested in Python.
Our DMACs are the case of a high-quality keyed hash functions (see Table 3). Re-
sults presented in table are for the following parameters: graph D(32, 257), N = 32,
h = 256. Output of the presented keyed hash functions passed the well known
Diehard tests, developed by George Marsaglia, for measuring the quality of ran-
dom number generators, [22].

As defined above h is the number of bits of the output (tag). Popular size of
tags are h = 128 bits, h = 256 bits, h = 512 bits and h = 1024 bits. When for
most of commonly used algorithms the size of tag is fixed (for example: SHA-3-224
and SHA-3-256), in our approach the tag can have arbitrary length. The size of
block length N can be chosen quite arbitrarily but it has to be much smaller than
the size of the message M and N ≥ l(q). The longer the size of block, the more
efficient the algorithm. Notice that if l(q) = N then message is encoded character
by character and it becomes a kind of ’string’ algorithm.

The parameters of graph D(n,Q) that is used depend on the block size N and
the size of tag h. The paramater Q is chosen to satisfy the property the inequality
Q ≥ 2N and the parameter n is chosen as the smallest possible n that satisfies the
inequality

h 6 n · l(q).

The most commonly used encodings are UTF-8 (l(q) = 8), UTF-16 (l(q) = 16),
UTF-32 (l(q) = 32). The Table 1 presents example values of n when h and alphabet
Fq (l(q)) are fixed.

Example 3. Let’s consider a message M of 2000 characters writen in UTF-8
(alphabet F28 ; l(q) = 8) parameter S of 10 characters . We want to divide the
message on blocks of 4 characters (N = 32 bits) and compute a tag of length
h = 512 bits for this message.
Parameter n can be computed from the formula h ≤ n · l(q):

512 = 8n⇒ 29 = 23n⇒ n = 64.

Then we choose a prime power Q such that

Q ≥ 232 ⇒ Q = 232.

Thus we use D(64, 232) graph. The length of the shortest cycle in this graph is
g(D(64, 232)) = 68 and the order of the graph is 2 · (232)64 = 22048.

archives.albanian-j-math.com

http://archives.albanian-j-math.com

Keyed hash function from large girth expander graphs 34

5. Collision resistance and one way property

Recall that, the family of graphs is a family of graphs of large girth and g(D(n, q)) =
2[(n+ 5)/2]. Hence there are no cycles shorter than 2[(n+ 5)/2] and therefore for
numer of blocks smaller than [(n+5)/2] no collisions can be find. First, we consider
the following problems.

Problem 1. Find a cycle in graph D(n,Q) that passes through vertex v0 and
vl(M).

Problem 2. Find a path between vertex v0 and h in graph D(n,Q), that contains
a subpath defined by S that ends in h.

First of all we shall notice that the secret key is a pair (IV = v0, S). For an
adversary that doesn’t know the secret key those problems are not defined precisely.
The problem of collision resistance is essentially the problem of finding a shortest
cycle in the graph D(n, q) (similarly as it was considered in [7] for other graphs).
We have the following theorem.

Theorem 1. Finding a collision in DMACs is a solution to Problem 1.

Proof. If we set v0 to be zero vector then DMAC-1 and DMAC-2 are exactly the
same functions. Finding a collision in DMAC-2 cannot be easier than finding a
collision in DMAC-1. Therefore, without lost of generalisation we can consider
collision resistance of DMAC-1.

To compute a hash DMAC-1 we start a walk in vertex v0 and an input M =
m1m2 . . .ml(M) (message M) gives us directions Mi how to walk in this graph.
Each vertex is Q-regular and Mi ≤ Q so different blocks correspond to different
edges incydet to a given vertex. To find a collision we have to find two different
inputs M 6= M ′, which hash to the same output h. To calculate output h first
we have to calculate vertex vl(M) and then using secret S we can walk to vertex
that corresponds to h. If vl(M) 6= vl(M ′) then S such that: s < 1

2g(D(n,Q)) would
lead us to different h and h′ (g(D(n,Q) denotes the length of the shortest cycle in
graph). Hence, to find a collision we have to find two different inputs M 6= M ′,
which leads us to one vertex vl(M) = vl(M ′). Two paths in graph, that start and
end in the same vertices form a cycle. �

Graphs D(n, q) form a family of a simple graphs. In this case O(|V |) time
is required to find a cycle in an |V |-vertex graph, that starts in a given vertex.
However here |V | = 2Qn so the complexity becomes exponential. Then O(|V |) is a
time required requaired to find any cycle. In our case we are looking for a specific
cycle that contains also vl(M).
The family of graphs is a family of graphs of large girth and g(D(n, q)) = 2[(n +
5)/2]. Therefore, the problem of finding a shortest cycle in D(n, q) graphs cannot
be easier than the general problem of finding the shortest path in a regular graph,
which is considered to be hard.

Theorem 2. Finding a preimage of h is a solution to Problem 2.

Proof. Because of the reason given in the proof of Theorem 1, without lost of gen-
eralisation we can consider preimage resistance of DMAC-1. If we have knowledge
about S then vertex vl(M) can be computed. An input M = m1m2 . . .ml(M) mes-
sage gives us directions Mi how to walk in this graph. We start a walk in initial

Albanian J. Math.

http://archives.albanian-j-math.com

M. Polak and E. Zhupa 35

vertex IV = ~v0. The second visited vertex is defined by the operator NM1(~v0)
and uniquely determined from equations (1). The next visited vertex is defined
by the operator NM2

(~v0) and uniquely determined from equations (1). We repeat
the calculations until we deal with all blocks mi. Graph D(n,Q) is Q-regular and
Mi 6 Q so different Mi gives us different directions. Each Mi corresponds exactly
to one edge incidence to a given vertex. There are many different paths from v0 to
vl(M). Find the preimage is to find the right path from v0 to vl(M). Notice that v0
is a part of a secret key. �

Composition of operators NMi and NSi gives a nonlinear system of n− 1 cubic
eqations (see Theorem 2 in [35]). Variables are: numbers Mi, s character of S and
n coordinates of initial vertex v0. There is l(M) + n + s total variables in this
system.
In general, solving a set of quadratic equations over a finite field is NP-hard (MQ
problem) for any finite field. There is a conjecture that this is a probabilistically
hard problem and Shor’s algorithm cannot be used to speed it up, [11]. Solving
a set of cubic equations over a finite field cannot be easier than solving the MQ
problem. However, the system related to the set of equations 1 and other systems
used for multivariate cryptography are not random, for a large enough parameters
it is computationally infeasible to solve them (see [11]).

Brute force attack to completely break the keyed hash function (find secret Ks)
may require to check qnqr possibilities (qn possible initial vectors and qr possible
passwords of length r), if we consider that the length of the S is known. A very
efficient algorithm to find the shortest path in a graph is Dijkstra’s algorithm of
complexity O(|V | log |V |+ |E|) and it can be adopted to find collisions. In the case
of the used graphs it gives O(2Qn log(2Qn)+Qn+1) and it’s not more efficient than
brute force. The complexity is increased because calculations are made over bigger
number field FQ, without changing the alphabet for IV and S.

6. Timings

The number of operations per bit of input depend on block size N and on the
parameter n of the graph D(n,Q). The number of field operations in the system
of equations 1 is 2(n− 1) (one step of the walk in the graph D(n,Q) costs 2(n− 1)
field operations).

To process one block of input with DMAC-1 we need two additions and one
multiplication as specified by operator Nt(w) (to calculate the first coordinate of
the neighbor), one mod operation and 2(n− 1) finite field operations. After the
block is processed, we process vector S. Therefore, the number of operations per
bit of input for DMAC-1 is given by the formula

(2n+ 2) · l(M) + (2n+ 2) · r
N · l(M)

=
2n+ 2

N

(
1 +

r

l(M)

)
,

where r is the length of S, N is block size and l(M) is the number of blocks, as
specified above.

To process one block of input with DMAC-2 we need to add vectors over number
field Fq which require n field additions. It gives us the following formula for the
number of operations per bit of input when DMAC-2 is used

(2n+ 2 + n)l(M) + (2n+ 2 + n)r

N · l(M)
=

3n+ 2

N

(
1 +

r

l(M)

)
.

archives.albanian-j-math.com

http://archives.albanian-j-math.com

Keyed hash function from large girth expander graphs 36

Table 2. Summary of the Tests for DMAC-1

Original Message Output S IV

The sky an-
nounced a
beautiful day:
the setting
moon shane pale
in an immense
field of azure,
which, towards
the east, min-
gled itself lightly
with the rosy
dawn.

49 a7 df d0 58 51
6a 9d 4e 94 2d 43
2a b9 60 f2 ab 22
5a a8 18 13 20 7d
f7 1 5f ad 21 3f
56 45

hint [147, 217, 2582, 2976, 1718,
1599, 27, 1083, 471, 1461,
1076, 2255, 2875, 2696, 2793,
1015, 1477, 1271, 2856, 221,
961, 2839, 1789, 1845, 1157,
622, 758, 882, 210, 1846, 3009,
410]

The sky ...
2d 48 b6 e4 50 de
8b d2 2e b4 1b d
fb 9f b6 63 a1 7b
e2 ee 4 e7 b1 ed
88 25 51 ca c4 7d
e3 36

hint [149, 219, 2582, 2976, 1718,
1599, 27, 1083, 471, 1461,
1076, 2255, 2875, 2696, 2793,
1015, 1477, 1271, 2856, 221,
961, 2839, 1789, 1845, 1157,
622, 758, 882, 210, 1846, 3009,
410]

The sky ... 78 46 b2 50 81 c1
ba b2 c c4 e6 6c
7a 69 b4 fd c6 64
a 69 30 e0 4d 30
1e e7 9c 36 55 e
d1 8a

hunt [147, 217, 2582, 2976, 1718,
1599, 27, 1083, 471, 1461,
1076, 2255, 2875, 2696, 2793,
1015, 1477, 1271, 2856, 221,
961, 2839, 1789, 1845, 1157,
622, 758, 882, 210, 1846, 3009,
410]

Da sky ... 86 f8 16 c5 dd
100 28 d1 91 8f
48 3c ff 3a a6 e2
b1 31 23 91 17 73
64 86 be 6b 81
ad 5e 10 67 56

hint [147, 217, 2582, 2976, 1718,
1599, 27, 1083, 471, 1461,
1076, 2255, 2875, 2696, 2793,
1015, 1477, 1271, 2856, 221,
961, 2839, 1789, 1845, 1157,
622, 758, 882, 210, 1846, 3009,
410]

If the password S is short (not more than 10 characters) and the message, for
which we want to calculate the tag, is long (which is true in general when MACs
are used) then r

l(M) is very small. Notice that the change of finite field doesn’t
increase much the number of operations per bit of input (except for the fact that
resulting vector has to be divided mod q).

Example 4. Lets consider data like in Example 3. The length of M in bits is
2000 · l(q) = 2000 · 8. The block size is N = 32 bits so the number of blocks

Albanian J. Math.

http://archives.albanian-j-math.com

M. Polak and E. Zhupa 37

Table 3. Summary of the Tests for DMAC-2

Original Message Output S IV

The sky an-
nounced a
beautiful day...

6f ed d1 fb 2f cf
56 fc a9 5e c8 1d
90 ec f7 4a df 42
1a 1e 3b 16 62 54
90 81 a2 a4 7e 3f
8d db

red [147, 217, 2582, 2976, 1718,
1599, 27, 1083, 471, 1461,
1076, 2255, 2875, 2696, 2793,
1015, 1477, 1271, 2856, 221,
961, 2839, 1789, 1845, 1157,
622, 758, 882, 210, 1846, 3009,
410]

The sky ... 59 9 c2 a b1 ba
88 1b 12 e7 f3 a
65 71 87 7b 25 c4
20 57 38 6e 54 b0
b8 19 74 5b d8
33 46 d

rid [147, 217, 2582, 2976, 1718,
1599, 27, 1083, 471, 1461,
1076, 2255, 2875, 2696, 2793,
1015, 1477, 1271, 2856, 221,
961, 2839, 1789, 1845, 1157,
622, 758, 882, 210, 1846, 3009,
410]

The sky ... d7 92 60 73 0 dd
ef fa 6 3 f2 c6 9b
62 c6 58 e7 59 31
a5 2d 5e 34 67 7d
a9 95 30 86 12 9a
e0

red [149, 221, 2582, 2976, 1718,
1599, 27, 1083, 471, 1461,
1076, 2255, 2875, 2696, 2793,
1015, 1477, 1271, 2856, 221,
961, 2839, 1789, 1845, 1157,
622, 758, 882, 210, 1846, 3009,
410]

Da sky ... 54 c7 8 d3 d9 fc
c1 ed 57 18 9d 74
62 d2 5d 35 5a
cd 15 3c b7 19 9a
3c 79 1d 4c 68 69
3b d8 6b

red [147, 217, 2582, 2976, 1718,
1599, 27, 1083, 471, 1461,
1076, 2255, 2875, 2696, 2793,
1015, 1477, 1271, 2856, 221,
961, 2839, 1789, 1845, 1157,
622, 758, 882, 210, 1846, 3009,
410]

l(M) =
2000 · 8

32
= 500. In this case the number of field operations per bit of input

is
130

32

(
1 +

10

500

)
≈ 4,

which is very efficient.

7. Conclusions

A new technique for message authentication was presented in this work. To the
best of our knowledge, the family of graphs D(n, q) has never been used before in
this context. The algorithms here introduced, for DMAC-1 and DMAC-2 respec-
tively, were implemented in Python and tested with different inputs. The results

archives.albanian-j-math.com

http://archives.albanian-j-math.com

Keyed hash function from large girth expander graphs 38

of our tests and the theoretical base show that the technique we introduce is a very
efficient and safe approach to compute message authentication code.

Acknowledgement. The authors would like to express their gratitude to Vasyl
Ustimenko for sharing his knowledge about graphs D(n, q), which made this re-
search possible. Special thanks also to Stanislaw Radziszowski for his useful re-
marks.

References

[1] G. Arzhantseva and A. Biswas, Large girth graphs with bounded diameter-by-girth ratio,
arXiv:1803.09229 (2018).

[2] Norman Biggs, Graphs with large girth, Ars Combinatoria, 25C (1987), 73–80 .
[3] Norman Biggs, Constructions for cubic graphs with large girth, The electronic jurnal of

Combinatorics Vol. 5 (1998).
[4] N. L. Biggs and A.G Boshier, Note on the girth of Ramanujan graphs, Journal of Combina-

torial Theory, Vol. 49 (1990), 190–194.
[5] N. L. Biggs and M. J. Hoare, The sextet construction for cubic graphs, Combinatorica, Vol.

3 (1983), 153–165.
[6] Béla Bollobás, Extremal Graph Theory, Dover Publications, 2004.
[7] Denis X. Charles, Eyal Z. Goren and Kristin E. Lauter, Cryptographic hash functions from

expander graphs, Journal of Cryptology, Vol. 22 (2009), 93–113.
[8] Erdős, Paul, Graph Theory and Probability, Modern Birkhauser Classics, Classic Papers in

Combinatorics (1987), 276–280.
[9] Z. Furedi and F. Lazebnik and A. Seress and V.A. Ustimenko and A.J. Woldar, Graphs of

Prescribed Girth and Bi-Degree, Journal of Combinatorial Theory, Series B, Vol. 64 (1995),
228–239.

[10] P. Guinand and J. Lodge, Tanner type codes arising from large girth graphs, Proceedings of
Canadian Workshop on Information Theory CWIT ?97, Toronto, Ontario, Canada (1997),
5–7

[11] Goubin Louis, Patarin Jacques and Yang Bo-Yin, Multivariate Cryptography, Encyclopedia
of Cryptography and Security, Springer US, 2011.

[12] S. Hoory and N. Linial and A. Wigderson, Expander graphs and their applications, Bulletin
of the American Mathematical Society, Vol. 43 (2006), 439–561.

[13] G. Tsudik, Message authentication with one-way hash functions, Preecedings INFOCOM ’92
(1992).

[14] Imrich, Vrto, Explicit construction of graphs without small cycles, Combinatorica, Vol. 4
(1984), 53–59.

[15] M. Klisowski and V. Ustimenko , On the Comparison of Cryptographical Properties of Two
Different Families of Graphs with Large Cycle Indicator, Mathematics in Computer Science,
Vol. 6 (2012), 181–198.

[16] F. Lazebnik and V. A. Ustimenko, Explicit construction of graphs with an arbitrary large
girth and of large size, Discrete Applied Mathematics, Vol. 60 (1995), 275–284.

[17] F. Lazebnik and V. A. Ustimenko and A. Woldar , A New Series of Dense Graphs of High
Girth, Bull (New Series) of AMS, Vol. 32 (1995), 73–79.

[18] F. Lazebnik and V. A. Ustimenko and A.J. Woldar, Polarities and 2k-cycle-free graphs,
Discrete Mathematics (1999), 503–513.

[19] A. Lubotzky and R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica, Vol. 8 (1988),
261–277.

[20] Grigorij A. Margulis, Explicit constructions of graphs without short cycles and low density
codes, Combinatorica, Vol. 2 (1982), 71–78.

[21] Grigorij A. Margulis, Explicit group-theoretical constructions of combinatorial schemes and
their application to the design of expanders and concentrators, Problems of Informations
Transmission, Vol. 24 (1988), 51–60.

[22] Marsaglia, Gorge, The Marsaglia Random Number CDROM, with The Diehard Battery of
Tests of Randomness, produced at Florida State University under a grant from The National
Science Foundation, 1985.

Albanian J. Math.

http://archives.albanian-j-math.com

M. Polak and E. Zhupa 39

[23] M. Morgenstern , Existence and explicit constructions of q+1-regular Ramanujan graphs for
every prime power q, Journal of Combinatorial Theory, Series B, Vol. 62 (1994), 44–62.

[24] A.K. Pizer, Ramanujan Graphs and Hecke Operators, Bulletin of the AMS, Vol. 23, No 1
(1990).

[25] M. Polak and U. Romańczuk and V. Ustimenko and A. Wróblewska , On the applications of
Extremal Graph Theory to Coding Theory and Cryptography, Electronic Notes in Discrete
Mathematics, Vol. 43 (2013), 329–342.

[26] William Stallings, Cryptography and Network Security: Principles and Practice,
3rd, Pearson Education, 2002.

[27] Jean-Pierre Tillich and Gilles Zémor, Collisions for the LPS Expander Graph Hash Function,
Advances in Cryptology – EUROCRYPT 2008: 27th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008.
Proceedings" (2008), 254–269.

[28] Jean-Pierre Tillich and Gilles Zémor, Hashing with SL2, Advances in Cryptology, Crypto?94,
Lecture Notes in Computer Science, Vol. 839 (1994).

[29] Vasyl Ustimenko, Coordinatisation of Trees and their Quotients, Voronoj’s Impact on Modern
Science, Vol. 2 (1998), 125 – 152.

[30] Vasyl Ustimenko, Maximality of affine group and hidden graph cryptosystems, J. Algebra
Discrete Math. (2005), 133–150.

[31] Vasyl Ustimenko, On the extremal graph theory for directed graphs and its cryptographical
applications, In: Shaska T., Huffman W.C., Joener D. and Ustimenko V., Advances in Coding
Theory and Cryptography, Series on Coding and Cryptology, Vol. 3 (2007), 181–.

[32] Vasyl Ustimenko, On linguistic dynamical systems, families of graphs of large girth and
cryptography, Zapiski Nauchnykh Seminarov POMI, Vol. 326 (2005), 214–234.

[33] V. Ustimenko and A. Wróblewska, On some algebraic aspects of data security in cloud com-
puting, Proceedings of International conference: Applications of Computer Algebra, Malaga,
Vol. 32 (2013), 144–147.

[34] Alfred Weiss Girth of bipartite sextet graphs, Combinatorica, Vol. 4 (1984), 241–245.
[35] Aneta Wroblewska, On some properties of graph based public keys, Albanian J. Math. 2 ,

no. 3 (2008), 229–234.
[36] Gilles Zémor, Hash functions and Cayley Graphs, Designs, Codes and Cryptography, Vol. 4

(1994), 381–394.

archives.albanian-j-math.com

http://archives.albanian-j-math.com

	1. Introduction
	2. Background
	3. The family of graphs D(n,q)
	4. Keyed hash function
	4.1. Basic construction (DMAC-1)
	4.2. Modified construction (DMAC-2)
	4.3. Properties of DMACs

	5. Collision resistance and one way property
	6. Timings
	7. Conclusions
	Acknowledgement

	References

