
ALBANIAN JOURNAL OF MATHEMATICS
Volume 14, Number 1, Pages 79–90
ISSN: 1930-1235; (2020)

ON THE HILBERT FUNCTION OF INTERSECTIONS OF A

HYPERSURFACE WITH GENERAL REDUCIBLE CURVES
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Abstract. Let W ⊂ Pn, n ≥ 3, be a degree k hypersurface. Consider a

“ general ” nodal union of d lines L1, . . . Ld with Li ∩ Lj 6= ∅ if and only if
|i − j| ≤ 1 (here called a degree d bamboo). We study the Hilbert function

of the set Y ∩W with cardinality k deg(Y ) and prove that it is the expected

one (with a few classified exceptions (n, k, d)) when W is either a quadric
hypersurface of rank at least 2 or n = 3 and W is an integral cubic surface.
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1. Introduction

For any positive integer d a degree d abstract bamboo T is a nodal projective
curve T with d irreducible components, all of them smooth and of genus 0, such
that there is an ordering L1, . . . , Ld of the irreducible components of T such that
Li ∩Lj 6= ∅ if and only if |i− j| ≤ 1 and #(Li ∩Li+1) = 1 for i = 1, . . . , d− 1. Any
such ordering will be called a good ordering. Any abstract bamboo is connected and
with arithmetic genus 0. Let A(d) denote the set of all degree d abstract bamboos.
Each T ∈ A(d) is connected, nodal and pa(T ) = 0. For all integers n ≥ 2, d > 0
let A(n, d) denote the set of all pairs (T, f), where T ∈ A(d) and f : T −→ Pn
is a morphism such that f(T ) has at most nodes and it is the union of d distinct
lines. The sets A(d) and A(n, d) are irreducible and non-empty. If n ≥ 3 the
map f : T −→ Pn is an embedding for a general (T, f) ∈ A(n, d). For any n ≥ 3
let B(n, d) denote the set of all f(T ) with (T, f) ∈ A(n, d) and f : T −→ Pn an
embedding. We call bamboos or degree d bamboos of Pn the elements of B(n, d).

Fix a reduced hypersurface W ⊂ Pn. Let A(n, d,W ) denote the set of all
(T, f) ∈ A(n, d) such that the degree d nodal curve f(T ) is transversal to W ,
i.e. no irreducible component of f(T ) is contained in W and the set f(T ) ∩W is
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formed by ddeg(W ) points, all of them smooth points of W . The set A(n, d,W )
is a nonempty open subset of A(n, d). If n ≥ 3 let B(n, d,W ) denote the set of all
T ∈ B(n, d) transversal to W .

Let M ⊆ Pn be an irreducible variety. Let E ⊂ M be any closed subscheme.
We will say that E has maximal rank in M if for each t ∈ N the restriction map
H0(OM (t)) −→ H0(OE(t)) has maximal rank, i.e. it is injective or surjective.
If E is a finite set, E has maximal rank in M if and only if h0(M, IE,M (t)) =
max{0, h0(OM (t)) − #E} for all t. Fix L ∈ Pic(M). We will say that E has
maximal rank with respect to L if the restriction map H0(M,L) −→ H0(E,L|E) has
maximal rank.

Why reducible curve and in particular why reducible curves whose irreducible
components are lines, e.g. bamboos ? They are useful even if one is only interested
in the study of smooth curves in projective spaces ([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 16,
17]). Why a few mathematicians care about the Hilbert function of the intersection
of a curve C ⊂ Pn with a hypersurface of Pn, often a quadric for n = 3 and a
hyperplane for n > 3 (see the string of papers just quoted and [13, 14, 15, 18, 19]) ?
Because it is often a key step to prove that C has the expected postulation. We also
point out that proving that the general element of a tiny family of curves has nice
intersection with a hypersurface may be very efficiently use for results on smooth
curves ([2, 6]).

We prove the following result.

Theorem 1. Let W ⊂ P3 be an integral cubic surface. Fix a positive integer d.
For a general X ∈ B(3, d,W ) the set X ∩W has maximal rank in W for the line
bundle OW (t) except in the following cases:

(t, d) ∈ {(1, 1), (1, 2), (2, 2), (2, 3), (2, 4)}.

Remark 7 explains the exceptional cases and computes their cohomology groups.
These are exceptional cases for all degree d connected and reduced curves transver-
sal to W . A key step of the proof of Theorem 1 (Lemma 9) works with minimal
modifications if W ⊂ P3 is an integral surface with arbitrary degree. However, for
each integer deg(W ) ≥ 4 one should expect a few exceptional cases and we have no
idea on them and how to do the initial cases to start the inductive proof.

We also prove the following result.

Theorem 2. Fix integers d ≥ n ≥ 2. Let W ⊂ Pn be a quadric hypersurface of
rank ρ ≥ 2. There is (T, f) ∈ A(n, d,W ) such that the set f(T ) ∩W has maximal
rank.

Acknowledgments: We thank a referee for several key suggestions and important
observations.

2. Preliminaries and the proof of Theorem 2

Fix a positive integer d. Let T be either an element of A(n, d) or, if n ≥ 3,
an element of B(n, d). By the definitions of A(n, d) and B(n, d) there is a good
ordering L1, . . . , Ld of the irreducible components of T . If d = 1 we say that T is
a final line of T . If d ≥ 2 we say that L1 and Ld are the final lines of T . For d ≥ 2
an irreducible component of T is a final line if and only if it meets only another
irreducible components of T .
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In this section we fix 2 different hyperplanes, U and V , of Pn, n ≥ 2, and set
W := U ∪ V .

Let H ⊂ Pn be a general hyperplane. Set D := W ∩ H. For any integer
t ≥ 0 we have h0(OW (t)) =

(
n+t
n

)
−
(
n+t−2
n

)
. Thus for all integers t > 0 we have

h0(OW (t))− h0(OW (t− 1)) = h0(OD(t)) =
(
n+t−1
n−1

)
−
(
n+t−3
n−1

)
.

Note that for any (T, f) ∈ A(n, d,W ) the integer deg(f(T ) ∩W ) = 2d is even.
For all integers n ≥ 2 and t ≥ 1 we define the following Assertion R(n, t):

Assertion R(n, t): There is (T, f) ∈ A(n, bh0(OW (t))/2c,W ) such that
h1(W, If(T )∩W,W (t)) = 0.

Remark 1. By semicontinuity if R(n, t) is true, then h1(W, Ih(Y )∩W (t)) = 0 for

a general (Y, h) ∈ A(n, bh0(OW (t))/2c). If n ≥ 3 it is sufficient to find B ∈
B(n, bh0(OW (t))/2c) such that W contains no irreducible component of B and
h1(W, IW∩B(t)) = 0.

Remark 2. R(2, t) is true for all t, because f(T ) is a general union of d lines of
P2 for a general (T, f) ∈ A(2, d).

Remark 3. We claim that R(n, 1) is true if and only if n = 2. R(2, 1) is true
(Remark 2). Assume n ≥ 3 and take a general (T, f) ∈ A(n, x), x := b(n + 1)/2c.
The curve f(T ) spans a linear space of dimension x. Hence f(T )∩W is a union of
2x points spanning a linear subspace of dimension ≤ x. Since 2x ≥ x + 2, R(n, 1)
fails.

Remark 4. Fix integers n ≥ 3, t ≥ 2, and assume that R(n, t) is true. Set
d := bh0(OW (t))/2c and take a general B ∈ B(n, d). The curve B is transversal to
W , B ∩ U is a general union of d points of U , B ∩ V is a general union of d points
of V and h1(W, IW∩B,W (t)) = 0. If h0(OW (t)) is even, then h0(IW∩B,W (t)) = 0.
Now assume h0(OW (t)) odd and hence h0(IW∩B,W (t)) = 1. Let E denote the
zero-locus of any f ∈ H0(W, IB∩W,W (t)) \ {0}. Fix a good ordering L1, . . . , Ld of
the irreducible components of B. Thus Ld a final line of B. Fix a general o ∈ Ld.
Thus o /∈ Ld \ Ld ∩ Ld−1 and o /∈ W . For a general p ∈ U let Dp denote the line
spanned by {o, p}. Set Bp := B ∪ Ld. Note that Bp ∈ B(n, d + 1) and that Bp
is transversal to W . For a general p obviously Bp ∩ U is a general union of d + 1
points of U . Since o /∈ W and p is general in o it is easy to check that Dp ∩ V is
a general point of V . Thus Bp ∩ V is a general union of d + 1 points of V . Hence
Dp ∩W * E. Thus h0(W, IBp∩W,W (t)) = 0.

Lemma 1. Fix integers n ≥ 3 and d > 0 and take a general B ∈ B(n, d). Then
either h1(IB(2)) = 0 or h0(IB(2)) = 0.

Proof. First assume d ≤ n. Since B is general, B spans a linear space M of
dimension d. By induction on d we easily see that h1(M, IB,M (t)) = 0 for all t ∈ N.
Hence h1(IB(t)) = 0 for all t. Thus we may assume d > n. (a) Assume n = 3.
First assume d = 4. Take a good ordering L1, L2, L3, L4 of the lines of B. Let H1

be the plane spanned by L1 ∪ L2 and H2 the plane spanned by L3 ∪ L4. To prove
the lemma in this case it is sufficient to prove that |IB,P3(2)| = {H1 ∪ H2}. Fix
Q ∈ |IB,P3(2)|. Q∩H2 contains the conic L3∪L4 and the point L1∩H2 /∈ L1∪L2.
Thus H2 ⊂ Q. In the same way we see that H1 is an irreducible component of Q,
concluding this case. Now assume d = 5. Take L1∪L2∪L3∪L4 as in the case d = 4
and call R a general line meeting L4. Since R * H1∪H2, h0(IL1∪L2∪L3∪L4∪R(2)) =
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0, concluding the proof of this case. The case d > 5 follows from the case d = 5,
because any degree d > 5 bamboo contains a degree 5 bamboo.

(b) Assume n ≥ 4. Fix a hyperplane H ⊂ Pn. Fix a general A ∈ B(n, n), call
Ln one of its final lines and set {o} := Ln ∩H. Let T ⊂ H be a general bamboo
of degree d − n with the only restriction that o /∈ Sing(T ) and o is contained in a
final line of T . Thus A∪T may be used to prove the lemma. Consider the residual
exact sequence of H in Pn:

(1) 0 −→ IA(1) −→ IA∪T (2) −→ I(A∩H)∪T,H(2) −→ 0

Since hi(Pn, IA(1)) = 0, i = 0, 1, and (A∪T )∩H is a general union of T and n− 1
points of H, the lemma follows from induction on n.

�

Lemma 2. R(n, 2) is true for all n ≥ 3.

Proof. Fix a bamboo T ⊂ Pn transversal to W . Consider the exact sequence

(2) 0 −→ IT,Pn −→ IT,Pn(2) −→ IT∩W,W (2) −→ 0

Since h1(IT,Pn) = 0 and h2(IT,Pn(2)) = h1(OT ) = 0, the long cohomology exact
sequence of (2) gives that h1(W, IT∩W,W (2)) = 0 if and only if h1(Pn, IT,Pn(2)) = 0
and a similar statement holds for h0. Thus to prove the lemma it is sufficient to
use that either h1(Pn, IT,Pn(2)) = 0 or h0(Pn, IT,Pn(2)) = 0 (Lemma 1).

�

Lemma 3. Fix integers n ≥ 2 and t ≥ 3. Assume R(n, t − 1). If n ≥ 3 assume
R(n− 1, t). Then R(n, t) is true.

Proof. Since the case n = 2 is true by Remark 2, we may assume n ≥ 3 and use
induction on n. Set x := bh0(OW (t))/2c and y := bh0(OW (t− 1))/2c.

(a) Assume that either h0(OW (t− 1)) is even or h0(OW (t)) is odd. Note that
we are looking for bamboos of degree x. Fix a general Y ∈ B(n, y). Note that
2(x − y) ≤ h0(OW∩H(t)) ≤ 2(x − y) + 1. Since H is general, H is transversal
to Y , Y ∩ H ∩ W = ∅ and H ∩ W is a rank 2 quadric hypersurface of H. Fix
o ∈ H ∩ Y with o in a final line of Y . Since the group of all g ∈ Aut(H) such that
g(H ∩W ) = H ∩W acts transitively on H \H ∩W , by the inductive assumption
(case n ≥ 4) or by Remark 2 (case n = 3) there is (T, f) ∈ A(n− 1, x− y,W ∩H)
such that o is a smooth point of f(T ) belonging to a final line of f(T ), f(T ) is
transversal to W ∩H and h1(W ∩H, IW∩H∩f(T )(t)) = 0. Set B := Y ∪T . If n ≥ 4,

f is an embedding and Y ∪ T ∈ B(n, x). If n = 3 there is h : B −→ P3 with h|Y
the identity map and h|T = f . Thus we may use B to test R(n, t). Consider the
residual exact sequence of H ∩W in W :

(3) 0 −→ IY,W (t− 1) −→ IB,W (t) −→ If(T )∩W∩H,W∩H(t) −→ 0

Since h1(W, IY,W (t − 1)) = 0 and h1(H ∩W, If(T )∩W∩H,W∩H(t)) = 0, (3) gives

h1(W, IB,W (t)) = 0.
(b) Assume h0(OW (t − 1)) odd and h0(OW (t)) even. Take a solution Y of

R(n, t− 1) with L1 and Ly its final lines. Note that y ≥ 2 and so L1 6= Ly. Fix a
general line D intersecting Ly and set {u, v} := D∩W with u ∈ U and v ∈ V . Note
that x−y ≥ 2. Let H ⊂ Pn be a general hyperplane containing v. Set {o} := L1∩H.
As in step (a) we see the existence of (T, f) ∈ A(n− 1, x− y − 1) containing o and
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with h1(W ∩H, IW∩H∩f(T ),W∩H(t)) = 0. We take B := Y ∪D ∪ f(T ) as image of
some (B′, h) ∈ A(n, x,W ) satisfying R(n, t).

�

Proof of Theorem 2: By semicontinuity it is sufficient to prove the theorem for a
rank 2 quadric, say W = U ∪ V with U and V hyperplanes. Since the case n = 2
is true (Remark 2) we may assume n ≥ 3. For all t ∈ N set xt := bh0(OW (t)/2c.
Thus x1 = b(n + 1)/2c and xt−1 < xt for all integers t ≥ 2. Since d ≥ n, there
is a unique integer t such that xt−1 < d ≤ xt. Since R(n, t) is true (Lemma 2
for t = 2 and Lemma 3 for t ≥ 3) a general Xt ∈ B(n, xt) is transversal to W
and h1(W, IXt∩W,W (t)) = 0. Take any bamboo B ⊆ Xt with deg(B) = d. Since
B ∩W ⊆ Xt ∩W , h1(W, IB∩W,W (t)) = 0. The Castelnuovo-Mumford’s Lemma
gives h1(W, IB∩W,W (x)) = 0 for all x > t. If t = 2 we get h0(W, IB∩W,W (1)) = 0
by the assumption d ≥ n which implies that B spans Pn. Thus if t = 2 B ∩W
has maximal rank in W . Assume t ≥ 3. Thus we may use R(n, t− 1). Since Xt is
general, any bamboo E ⊂ B is general in B(n, deg(E)). Take a bamboo Xt−1 ⊂ B
with deg(Xt−1) = xt−1. R(n, t − 1) gives h0(W, IXt−1∩W,W (t − 1)) ≤ 1. B may
be considered as a general bamboo obtained from Xt−1 adding at least one line.
Remark 4 gives h0(W, IB∩W,W (t− 1)) = 0. Thus B ∩W has maximal rank in W .

�

3. Proof of Theorem 1

In this section we work in P3 and prove Theorem 1. Let W ⊂ P3 be an integral
cubic surface. Since h1(OP3(t− 3)) = 0 for all t ∈ Z and h2(OPn(t− 3)) = 0 for all
t ≥ 0, a standard exact sequence gives h0(OW (t)) =

(
t+3

3

)
−
(
t
3

)
and h1(OW (t−2)) =

0 for all t ≥ 1. Set xt := bh0(OW (t))/3c. Note that h0(OW (t)) ≡ 1 (mod 3) for all
t ≥ 0, i.e. h0(OW (t)) = 3xt + 1 for all t ≥ 0.

Remark 5. For any Y ∈ B(3, d,W ) the scheme Y ∩W is the union of 3d points.
Thus Y ∩W has maximal rank in W if and only if h0(W, IW∩Y,W (t)) = 0 for all t
such that xt < d and h1(W, IW∩Y,W (t)) = 0 for all t such that d ≤ xt.

Consider the following assertion H(t), t ≥ 3:
Assertion H(t), t ≥ 3: h1(W, IW∩Y,W (t)) = 0 for a general Y ∈ B(3, xt,W ).

Note that Assertion H(t) is true if and only if h0(W, IW∩Y,W (t)) = 1 for a general
Y ∈ B(3, xt). By the semicontinuity theorem for cohomology H(t) is true if and
only if h1(W, IW∩Y,W (t)) = 0 for at least one B ∈ B(3, xt,W ).

The following example shows our main reason for using a quadric instead of a
plane for an inductive proof of Theorem 1 and of H(t) for t ≥ 5.

Example 1. Let M ⊂ P2 be an integral plane cubic. For each (T, f) ∈ A(2, d,M)
the scheme f(T ) is a degree d plane curve. Thus the scheme f(T )∩M is the complete
intersection of a plane cubic and a degree d curve. Hence it has not maximal rank,
but it is very near to having it. Indeed, h0(OM (k)) = 3k for all k > 0. Note that
f(T ) ∩M ∈ |OM (d)|. The cohomology of line bundles of the integral curve genus
1 curve M gives that the restriction map ρk : H0(OM (k)) −→ H0(OM∩f(T )(k)) is
surjective if k > d, injective if k < d, while dim ker(ρd) = dim coker(ρd) = 1.

Remark 6. Fix T ∈ B(3, 3). Since deg(T ) = 3 and pa(T ) = 0, T spans P3. Thus
h1(IT (1)) = 0. Since h2(IT ) = h1(OT ) = 0, the Castelnuovo-Mumford’s Lemma
gives h1(IT (t)) = 0 for all t ≥ 1.
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Lemma 4. Fix a general T ∈ B(3, 4). Then h1(IT (t)) = 0 for all t ≥ 2.

Proof. By the Castelnuovo-Mumford’s Lemma it is sufficient to prove the case t = 2.
Take two different planes H and M . Fix general lines L1, L2 of H and a general

line L4 of M . Let L3 ⊂ M a general line containing the point L2 ∩M . Note that
T := L1 ∪ L2 ∪ L3 ∪ L4 is a bamboo contained in H ∪M . Take any W ∈ |IT (2)|.
Since W ∩M contains L3 ∪ L4 ∪ {L1 ∩M}, M is an irreducible component of W .
Similarly, H ⊂W . Thus |IT (2)| = {H ∪M}.

�

Lemma 5. Fix a general Y ∈ B(3, 5,W ). We have h0(W, IW∩Y,W (x)) = 0 for all
x ≤ 2 and h1(W, IW∩Y,W (t)) = 0 for all t ≥ 3.

Proof. Since W ∩ Y spans P3, h0(W, IW,P3(1)) = 0. Fix a general E ∈ B(3, 4).
Lemma 4 gives h0(P3, IE,P3(2)) = 1. Adding a line to E we get a degree 5 bam-
boo Y such that h0(P3, IY,P3(2)) = 0. Since h1(P3, IY,P3) = 0, the residual exact
sequence of W gives h0(W, IW∩Y,W (2)) = 0.

Claim: h1(P3, IY,P3(3)) = 0.

Proof of the Claim: Let Q ⊂ P3 be a smooth quadric. Take 3 distinct elements
L1, L3, L5 of |OQ(1, 0)|. Let L2 be a general line of P3 intersecting both L1 and
L3. Let L4 be a general line of P3 intersecting both L5 and L3. Set F := L1 ∪
L2 ∪ L3 ∪ L4 ∪ L5. Since F ∈ B(3, 5), by semicontinuity to prove the claim it is
sufficient to prove that h1(P3, IF,P3(3)) = 0. Note that F ∩ Q = L1 ∪ L3 ∪ L5

scheme-theoretically. Thus the residual exact sequence of Q gives the following
exact sequence

(4) 0 −→ IL2∪L4,P3(1) −→ IF,P3(3) −→ IL1∪L3∪L5,Q(3) −→ 0

Use h1(P3, IL2∪L4,P3(1)) = 0, h1(Q, IL1∪L3∪L5,Q(3)) = h1(Q,OQ(0, 3)) = 0 and the
cohomology exact sequence of (4).

By the Castelnuovo-Mumford’s Lemma to prove the h1-vanishing it is sufficient
to prove that h1(W, IY ∩W (3)) = 0, which is true by the residual exact sequence of
W , because h1(P3, IY,P3) = h1(P3, IY,P3(3)) = 0.

�

Lemma 6. There is a degree 6 bamboo T ⊂ P3 such that h1(IT (3)) = 0.

Proof. Fix a plane H ⊂ P3 and a general reducible conic L5∪L6 ⊂ H. Fix a general
o ∈ L4. Let Y := L1 ∪ L2 ∪ L3 ∪ L4 be a general degree 4 bamboo containing o.
Thus T := Y ∪L5 ∪L6 is a degree 6 bamboo. Consider the residual exact sequence
of H:

(5) 0 −→ IY (2) −→ IT (3) −→ IT,H(3) −→ 0

Since T∩H is the union of L5∪L6 and 3 general points of H, h0(H, IT∩H,H(3)) = 0,
i.e. h1(H, IT∩H,H(3)) = 0. Lemma 4 gives h1(IY (2)) = 0. Use the long cohomology
exact sequence of (5).

�

Lemma 7. Let W ⊂ P3 be any degree 3 surface (even reducible or with multiple
components). Let Y ⊂ P3 be a general degree 6 bamboo and X ⊂ P3 be a general
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degree 7 bamboo. Then dimY ∩W = dimX ∩W = 0, h1(W, IY ∩W,W (3)) = 0 and
h0(W, IW∩X,W (3)) = 0.

Proof. Since Y and X are general, none of their irreducible components is contained
in W . Thus the residual exact sequence of W gives the exact sequence

(6) 0 −→ IY −→ IY (3) −→ IW∩Y,W (3) −→ 0

Lemma 6 gives h1(IY (3)) = 0. Since h2(IY ) = h1(OY ) = 0, the long cohomology
exact sequence of (6) gives h1(W, IW∩Y,W (3)) = 0, i.e. h0(W, IW∩Y,W (3)) = 1, say
{D} := |IW∩Y,W (3)|. Take as X the union of Y and a general line L intersecting a
final line of T . Observe that L ∩W * D.

�

Remark 7. Fix a positive integer d and Y ∈ B(3, d,W ). Set S := Y ∩W . Thus
#S = 3d.

(a) Assume d = 1. S is formed by 3 collinear points. Thus h1(P3, IS,P3(1)) = 1,
h0(P3, IS,P3(1)) = 2 and h1(P3, IS,P3(t)) = 0 for all t ≥ 2. Thus h1(W, IS,W (1)) = 1,
h0(W, IS,W (1)) = 2 and h1(W, IS,W (t)) = 0 for all t ≥ 2.

(b) Assume d = 2. Thus S is the union of 6 coplanar points contained
in a reducible plane conic and in no other conic. Thus h1(P3, IS,P3(1)) = 3,
h0(P3, IS,P3(1)) = 1, h1(P3, IS,P3(2)) = 1, h0(P3, IS,P3(2)) = 5 and h1(P3, IS,P3(t)) =
0 for all t ≥ 3. Thus h1(W, IS,W (1)) = 3, h0(W, IS,W (1)) = 1, h1(W, IS,W (2)) = 1,
h0(W, IS,W (2)) = 5 and h1(W, IS,W (t)) = 0 for all t ≥ 3.

(c) Assume d = 3. Obviously h0(P3, IY,P3(1)) = 0 and h1(P3, IY,P3(t)) = 0 for
all t > 0 (Remark 6). Hence h0(P3, IY,P3(2)) = 3. Obviously h0(W, IW∩Y,W (2)) ≥
3. Since h1(P3, IY,P3(−1)) = 0, the residual exact sequence of W gives that
h0(W, IW∩Y,W (2)) = 3. Thus h1(W, IW∩Y,W (2)) = 2. Since h1(P3, IY,P3) = 0,
the residual exact sequence of W gives h0(W, IY ∩W,W (3)) = h0(P3, IY,P3(3)) =
10. Thus we have h1(W, IY ∩W,W (3)) = 0. Therefore the Castelnuovo-Mumford’s
Lemma gives that h1(W, IY ∩W,W (t)) = 0 for all t ≥ 3.

(d) Assume d = 4. Lemma 4 gives h0(P3, IY,P3(2)) = 1. Since obviously
h1(P3, IY,P3(−1)) = 0, the residual exact sequence of W gives h0(W, IY ∩W,W (2)) =
1. Thus h1(W, IY ∩W,W (2)) = 3.

Lemma 8. H(3) is true.

Proof. Note that x3 = 6. Apply Lemma 6. �

Lemma 9. Fix an integer t ≥ 5 and assume H(t− 2). Then H(t) is true.

Proof. For each o ∈ P3 let χ(o) denote the closed subscheme of P3 with (Io)2 as its
ideal sheaf. For any S ⊂ P3 such that #S = 2 let 〈S〉 ⊂ P3 denote the unique line
containing S.

Since 3(t − 1) ≤
(
t+1

3

)
−
(
t−2

3

)
for all t ≥ 5, xt−2 ≥ t − 2 for all t ≥ 5. Since

H(t− 2) is true, h1(W, IB∩W (t− 2)) = 0 for a general B ∈ B(3, xt−2,W ). Fix any
such B. Since #Sing(B) = xt−2−1, #Sing(B) ≥ t−4. Take any S ⊂ Sing(B) such
that #S = t− 4 and set Z := ∪o∈Sχ(o) and B′ := B ∪Z. Note that B \S has t− 3
connected components and that the closure of each connected component of B\S is
a bamboo. Call U1, . . . , Ut−3 the closure of the connected components of Y \S and
set yi := deg(Ui). All positive integers y1, . . . , yt−3 such that y1 + · · ·+ yt−3 = xt−2

appear for a certain S. By [10, Ex. 2.1.1] B′ is a flat limit of a family of t−3 disjoint
curves, each of them a bamboo, and with degrees y1, . . . , yt−3 and whose limits are
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bamboos U1, . . . , Ut−3. Thus by semicontinuity for a general union Y ⊂ P3 of t− 3
bamboos of degrees y1, . . . , yt−3 Y is transversal to W and h1(W, IW∩Y,W (t)) = 0.
Call Y1, . . . Yt−3 the connected components of Y with deg(Yi) = yi. In the following
we only take yi = 1 for i = 1, . . . , t−4, and yt−2 = xt−2−t+4 (this can be achieved
for a suitable S). Thus Yi is a line for i 6= t− 4 and Yt−3 ∈ B(3, xt−2 − t+ 4). We
call R1 and R2 the final lines of Yt−3 (we have R1 6= R2, because xt−2 > t− 3).

Let Q ⊂ P3 be a general smooth quadric. Set D := Q ∩W . Bertini’s theorem
gives that D is an integral element of |OQ(3, 3)|. The adjunction formula gives
ωD ∼= OD(1). D has arithmetic genus 4 and h0(OD(t)) = 6t− 3 for all t ≥ 2. Since
h1(OW (t − 2)) = 0 for all t ≥ 1, h0(OW (t)) − h0(OW (t − 2)) = h0(OD(t)) for all
t ≥ 2. Note that xt = xt−2 + 2t − 1. Fix t + 1 general elements A1, . . . , At+1 of
|OQ(1, 0)| and t− 2 general elements B1, · · ·Bt−2 of |OQ(0, 1)|.

Let E ∈ |OQ(t+1, t−2)| be the union of all lines Ai and all lines Bj . Since t ≥ 5,
t − 2 ≥ 3. Set E1 := A1 ∪ B1 ∪ A2, E2 := A3 ∪ B2 ∪ A4 and E3 := A5 ∪ B3 ∪ A6.
For i = 4, . . . , t − 2 set Ei := Ai+3 ∪ Bi. Assume for the moment t ≥ 6. Fix a
general o1 ∈ A2, a general o2 ∈ A3, a general o3 ∈ A4, a general o4 ∈ A5 and a
general o5 ∈ A6. For i = 7, . . . , t+ 1 take a general pi ∈ Ai. For i = 4, . . . , t− 3 let
qi be a general element of Bi. Note that we did not chose any qt−2 ∈ Bt−2. Write
S′ := {o1, o2, o3, o4, o5, p7, . . . , pt+1, q4, . . . , qt−3}. Since the irreducible components
of E are general and each of them contains at most one element of S′, S′ may be
seen as a general subset of Q with cardinality 2t − 6. Note that #S′ is twice the
number of connected components of Y . Since a general line intersects transversally
Q, for a general S1 ⊂ Q with #S1 = 2 the line 〈S1〉 is a general line of P3. Thus
by semicontinuity we may assume the lines 〈{o1, o2}〉, 〈{o3, o4}〉, 〈{o5, p7}〉 and
〈{qi, pi+4}〉, i = 4, . . . , t − 4, are t − 4 general lines of P3. Thus by semicontinuity
we may assume that these lines are Y1, . . . , Yt−4 (in this order). For any line R * Q
and any o ∈ P3 \R there is a line containing o and intersecting R at a general point.
Thus we may assume that pt+1 ∈ R1, that qt−3 ∈ R2 and that neither pt+1 nor
qt−3 is a singular point of Yt−3.

For t = 5 Y has only 2 connected components, E = E1 ∪ E2 ∪ E3 and we only
take o1, o2, o3, o4. As in the case t ≥ 6 we may assume that Y1 = 〈{o1, o2}〉, that
o3 ∈ R1 and that o4 ∈ R2. Set J := Y ∪ E. Since the lines Ai and Bj are general,
J is transversal to W .

Claim 1: h1(W, IJ∩W,W (t)) = 0.
Proof of Claim 1: Note that Y ∩Q ∩W = ∅. The residual exact sequence of D
in W shows that to prove Claim 1 it is sufficient to prove h0(D, IE∩D,D(t, t)) = 0.
Since E ∈ |OQ(t+1, t−2)|, D∩E ∈ |OD(t+1, t−2)|. Thus it is sufficient to prove
that h0(D,OD(−1, 2)) = 0. Use the exact sequence

0 −→ OQ(−4,−1) −→ OQ(−1, 2) −→ OD(−1, 2) −→ 0

and that h0(OQ(−1, 2)) = h1(OQ(−4,−1)) = 0 by the Künneth formula.
Set Σ := Sing(E) \ (Sing(E1) ∪ · · · ∪ Sing(Et−2)). Note that Σ is the set of all

Ai ∩ Bj for some i, j such that Ai ∪ Bj is not contained in the same curve Eh.
Set χ := ∪o∈Σχ(o). Since χ ∩W = ∅, J is transversal to W and transversality is
an open condition, Claim 1 shows that to conclude the proof of the lemma it is
sufficient to prove the following Claim 2.
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Claim 2: The scheme J ∪ χ is in the closure of B(3, xt) in the Hilbert scheme of
P3.
Proof of Claim 2: We use the notation of the case t ≥ 6, the case t = 5 only
requiring minimal modifications (see Proof of Claim 2 of Lemma 11 for the mod-
ifications needed for the case t = 4). We deform E and J in the following way.
Each Bi remain fixed in the deformation and we keep fixed the points q1, . . . , qt−4

as linking points. Each line Ai, 1 ≤ i ≤ t + 2, is a flat limit of lines intersecting
the only curve Bj such that Ai ∪Bj is in the the same Eh, i.e. B1 for A1 and A2,
B2 for A3 and A4, B3 for A5 and A6 and Bi for Ai+3 if 4 ≤ i ≤ t − 2. We call ∆
a smooth and connected one-dimensional parameter space for these deformations,
say π : F −→ ∆, with 0 ∈ ∆ such that π−1(0) = E. For each x ∈ ∆ call Ai(x) the
irreducible component E(x) := π−1(x) with Ai as its limit. Restricting if necessary
∆ we may assume that for all x ∈ ∆ \ {0} the lines Ai(x) are pairwise disjoint and
each of them intersects a unique Bh. Since each oi and each pi is a smooth point of
E, up to an étale covering of ∆, we may assume that π has 5 sections Oi, 1 ≤ i ≤ 5,
and t−5 sections Pi, 7 ≤ i ≤ t+1, such that Oi(0) = oi and Pi(0) = pi for all i. Re-
stricting if necessary ∆ we may assume that for each x ∈ ∆ the values at x of these
sections are different. For all x ∈ ∆ we define the lines Yi(x), 1 ≤ i ≤ t−4, in the fol-
lowing way. For each x ∈ ∆ set Y1(x) := 〈{o1(x), o2(x)}〉, Y2(x) := 〈{o3(x), o4(x)〉,
Y3(x) := 〈{o5(x), p7(x)〉 and Yi := 〈{qi, pi+4(x)}〉 for 4 ≤ i ≤ t−3. We may deform
Yt−3 to a bamboo Yt−3(x), x 6= 0, with final lines R1(x) and R2(x), with R1(x)
containing qt−2 for all x and with R2(x) containing pt+1(x) for all x. Let J(x)
denote the union of E(x) and these bamboos Yi(x), 1 ≤ i ≤ t − 3. Restricting
if necessary ∆ we may assume that these bamboos are pairwise disjoint and that
they meet E(x) only at the prescribed linking points. By [10, Ex. 2.1.1] J ∪ χ is
a flat limit of the family J(x), x ∈ ∆ \ {0}. For x 6= 0, J(x) is a connected and
nodal curve with arithmetic genus 0. If we take as a good ordering of Yt−3(x) a
good ordering with R1(x) as the first line and R2(x) as a last line the string of lines
appearing in E1(x) ∪ Y1(x) ∪ E2(x) ∪ Y2(x) ∪ · · · ∪ Et−3(x) ∪ Yt−3(x) ∪ Et−2(x) is
a good ordering of J(x).

�

Lemma 10. Let Y ⊂ P3 be a union of 3 disjoint lines, none of them contained in
W . Then h0(W, IY ∩W,W (2)) = 1 and h1(W, IY ∩W,W (2)) = 0.

Proof. Obviously Y is contained in a quadric, Q, which cannot be reducible or a
cone, because Y has 3 connected components. Since Y is the union of 3 elements of
a ruling of Q, h0(Q, IY,Q(2)) = 0 and hence Q is the unique quadric containing Y .
Since no irreducible component of Y is contained in W and Y is a reduced curve,
the residual exact sequence of W in P3 is the following exact sequence:

(7) 0 −→ IY (−1) −→ IY (2) −→ IY ∩W,W (2) −→ 0

Since Y is a reduced curve, h0(OY (−1)) = 0. Thus h1(IY (−1)) = 0. Since
h0(IY (2)) = 1, (7) gives h0(W, IY ∩W,W (2)) = 1.

�

Lemma 11. H(4) is true.

Proof. Note that h0(OW (4)) = 31 and hence x4 = 10. Thus we need to prove that
h1(W, IB∩W,W (4)) = 0 for a general B ∈ B(3, 10). We adapt the proof of Lemma
9 using the curve in Lemma 10 instead of a degree 3 bamboo.
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Fix a general (Y,Q) ∈ B(3, 1)3 × |OP3(2)|. Since Q is general, it is smooth. Set
D := Q∩W . Bertini’s theorem gives thatD is an integral element of |OQ(3, 3)|. Call
Y1, Y2, Y3 the connected components of Y . Since (Y,Q) is general, Y is transversal
to Q. Since 2 general points of Q spans a general line of P3, Y ∩ Q is a gen-
eral subset of Q with cardinality 6. Fix o1 ∈ Y1 ∩ Q and set {o2, o3} := Y2 ∩ Q
and {o4, o5} := Y3 ∩ Q. Let Ai, 1 ≤ i ≤ 5, the element of |OQ(1, 0)| contain-
ing oi. Let B1, B2 be 2 general elements of |OQ(0, 1)|. Set E1 := A1 ∪ B1 ∪ A2,
E2 := A3 ∪ B2 ∪ A4, E := E1 ∪ E2 ∪ A3 and J := E ∪ Y . E1 and E2 are degree 3
bamboos and we take A1 ∪B1 ∪A2 and A3 ∪B2 ∪A4 as a good ordering of them.

Claim 1: h1(W, IJ∩W (4)) = 0.
Proof of Claim 1: Lemma 10 gives h1(W, IY ∩W,W (2)) = 0. Note that

E ∩W = E ∩ D ∈ |OD(5, 2)| . In the Proof of Claim 1 of Lemma 9 we proved
that h1(D, IE∩W,D(4, 4)) = 0. Hence h1(W, IW∩E,W (4, 4)) = 0. Lemma 10 gives
h1(W, IY ∩W,W (2)) = 0. Thus the residual exact sequence of the Cartier divisor D
of W gives h1(W, IJ∩W (4)) = 0.

The curve J is a connected nodal curve with degree 10 whose connected com-
ponents are lines. Note that χ has 6 connected components, each of them with
as its reduction a singular point of the nodal curve J . Since the nodal curve J is
connected, with 10 smooth connected components and with 15 singular points, J
has arithmetic genus 6. Thus χ(OJ∪χ) = 0 and J ∪ χ and any B ∈ B(3, 10) have
the same Hilbert polynomial. To prove H(4) using Claim 1 and the semicontinuity
theorem for cohomology it is sufficient to prove the following Claim 2.

Claim 2: The scheme J ∪ χ is in the closure of B(3, 10) in the Hilbert scheme of
P3.

Proof of Claim 2: A1 and A2 are flat limits of the family of all lines of
P3 meeting B1 and whose general member, say Ã1 and Ã2, is a general line of P3

meeting B1. A3 and A4 are flat limits of the family of all lines of P3 meeting B3 and
whose general member, say Ã3 and Ã4, is a general line of P3 meeting B2. A5 is a
line of P3 and hence it is a flat limit of the family of all lines of P3. Call Ã3 a general
line of P3. By [10, Ex. 2.1.1] E ∪ χ is a flat limit of a flat family F whose general

member is Ẽ1∪Ẽ2∪Ã1 with Ẽ1 := Ã1∪B2∪Ã2 and Ẽ2 := Ã3∪B2∪Ã4. Note that

Ẽ1, Ẽ2 and Ã5 are pairwise bamboos of degree 3, 3 and 1 respectively. As expected

by the good ordering of E1 and E2 we order the lines of Ẽ1 (resp. Ẽ2) so that

Ã2 follows B1 which follows Ã1 (resp. Ã2 follows B1 which follows Ã1). We call
π : F −→ ∆ the flat family and 0 ∈ ∆ the point such that π−1(0) = E ∪ χ and call

z the general point of ∆ such that π−1(z) = Ẽ1 ∪ Ẽ2 ∪ Ã5. Since {o1, o2, o3, o4, o5}
of in the smooth locus of E ∪ χ, up to an étale covering of ∆, we may assume the
existence of 5 sections of π, say si : ∆ −→ F , 1 ≤ i ≤ 5, with si(0) = oi for all i.
There is an algebraic way to chose for each x ∈ ∆ a line A1(x) with A1(x) = s1(x)
for all x ∈ ∆ and A1(z) the general line of P3 containing s1(z). Restricting if
necessary ∆ we may assume #{s1(x), s2(x), s3(x), s4(x), s5(x)} = 5 for all x ∈ ∆.
For each x ∈ ∆ set Y2(x) := 〈{s2(x), s3(x)}〉 and Y3(x) := 〈{s4(x), s5(x)}〉. Thus
s1(0) = Y1, s2(0) = Y2 and s3(0) = Y3. Since Yi ∩ Yj = ∅ for all i 6= j, restricting
if necessary ∆ we may assume that Yi(x) ∩ Yi(x) = ∅ for all i 6= j. We may
also assume that for the general x ∈ ∆ (and in particular for x = z) Y1(x) meets
E1(x) ∪ E2(x) ∪ A5(x) only at s1(x), Y2(x) meets E1(x) ∪ E2(x) ∪ A5(x) only at
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{s2(x), s3(x)} and Y3(x) meets E1(x)∪E2(x)∪A5(x) only at {s4(x), s5(x)}. Thus
π−1(z) := Y1(z)∪E1(z)∪ Y2(z)∪E2(z)∪ Y3(z)∪A3(z) is a connected nodal curve
with 10 connected components and 9 singular points. Thus pa(π−1(z)) = 0. To
conclude the proof of Claim 2 and hence to conclude the proof of the lemma it is
sufficient to fing a good ordering of the lines of π−1(z). The good ordering is the
one coming from the list Y1(z) ∪ E1(z) ∪ Y2(z) ∪ E2(z) ∪ Y3(z) ∪ A3(z) with the
good ordering of E1(z) and E2(z) obtained from the one of E1 and E2 adding the
symbol˜to the lines Ai.

�

Proof of Theorem 1: We discussed in Remark 7 why the listed cases are excep-
tional and the amount of maximal rank failure for each of these cases. Thus
to prove the theorem we may assume d ≥ 5. For d = 5 use Lemma 5. For
d = 6 use Lemma 7. From now on we assume d ≥ 7. Let t be the minimal
integer such that xt ≥ d. Thus xt−1 < d ≤ xt. Since H(t) is true, there is
T ∈ B(3, xt,W ) such that h0(W, IT∩W (t)) = 1 and h1(W, IT∩W (t)) = 0. Thus
h1(W, IT∩W (x)) = 0 for all x ≥ t by the Castelnuovo-Mumford’s Lemma. Ev-
ery connected subcurve of a bamboo is a bamboo. Let E ⊆ T a connected
degree d curve. Thus h1(W, IW∩E,W (x)) = 0 for all x ≥ t. E is a bamboo.
Since B(3, d,W ) is irreducible, it is sufficient to find B ∈ B(3, d,W ) such that
h0(W, IW∩B,W (t − 1)) = 0. By H(t − 1) there is F ∈ B(3, xt−1,W ) such that
h0(W, IW∩F,W (t− 1)) = 0. Fix a final line L1 of F and take B := F ∪ L, where L
is a general line intersecting L1.

�
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