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Abstract. We show that the abc Conjecture implies the Weak Diversity Con-
jecture of Bilu and Luca. In addition, we unconditionally reduce the Weak

Diversity Conjecture to the case of cyclic covers of prime order.
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1. Introduction

This note concerns the Weak and Strong Diversity Conjectures. The Strong Di-
versity conjecture, due to Andrzej Schinzel, first appeared in [DZ], in the discussion
following Theorem 2 of that paper. (The name “Strong Diversity” first appeared
in [BL], as Conjecture 1.5.) Recall that a geometrically irreducible branched cover
of curves over a number field is one where both the source and the target are
irreducible after base change to Q.

Conjecture 1.1. (“Strong Diversity”) Let X → A1
Q be a geometrically irreducible

branched cover of curves over Q, such that not all of its branch points are Q-rational,
or such that the cover is not abelian. Let k(N) be the compositum of the fields of
rationality of the points in the fibers over x = 1, ..., N . Then there exists a positive
constant c, independent of N , such that the degree of k(N) over Q is at least ecN .
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We note that the hypotheses in the above conjecture are necessary, and we refer
the reader to [DZ] for further discussion. The Strong Diversity Conjecture is closely
related to the “Weak Diversity Conjecture” (Conjecture 1.4 in [BL]), which is itself
an extension of a conjecture of Cutter, Granville, and Tucker ([CGT, Conjecture
1]).

Conjecture 1.2. (“Weak Diversity”) Let K be a number field, and let X → A1
K

be a non-trivial geometrically irreducible branched cover of curves over K. Then
there exists a positive constant c such that the number of different fields appearing
as residue fields of the points in the fibers over x = 1, ..., N is at least cN for all N .

We remark that the Weak Diversity Conjecture was only stated in [BL] for
K = Q, but we, in fact, prove the more general form of Conjecture 1.2 under the
assumption of the abc Conjecture. Note also that for K = Q, the consequence
of Conjecture 1.1 implies the consequence of Conjecture 1.2. The hypotheses of
Conjecture 1.2, however, are weaker. In [BL], Bilu and Luca prove Weak Diversity
(for K = Q) in the case not covered by Strong Diversity, namely for covers where
the branch points are Q-rational, and the cover is abelian. They therefore conclude
that Strong Diversity implies Weak Diversity for K = Q.

Remark 1.3. The Weak and Strong Diversity Conjectures were stated in [BL] in
terms of residue fields of a given point in each fiber. In light of the quantitative
version of Hilbert’s Irreducibility Theorem ([S, Theorem, p. 134]), all fibers except
negligibly many have only one point. So the formulations of [BL] are equivalent to
our formulations above. For Weak Diversity, it would also be equivalent to look
at the compositum of the residue fields of all points in each fiber. We use this
formulation in Propositions 3.2 and 3.3.

While this was not mentioned in earlier discussions of this conjecture, we remark
that the Weak Diversity Conjecture is also closely related to the following conjec-
tural form of a uniform Faltings’ Theorem (although we are not aware of any clear
connection between the abc conjecture and this uniform Faltings’ theorem beyond
the fact that the abc conjecture implies the basic Faltings’ theorem [E]). This form
first appeared in [P], where Pacelli proves this conjecture under the assumption of
Lang’s conjecture about rational points on varieties of general type; see also [CHM].

Conjecture 1.4. (“Uniform Faltings’ Theorem”) Let g ≥ 2 and d be natural num-
bers. Then there exists a constant Bd,g such that for every number field L of degree
d over Q, and for every curve X of genus g over L, we have that #X(L) ≤ Bd,g.

As we will soon see (Proposition 3.2), the Weak Diversity Conjecture can be
reduced to the case of G-Galois covers f : X → A1

K . In the Galois case, Conjecture
1.4 implies Weak Diversity for g(X) ≥ 2, which will be shown in §5. In this way,
Weak Diversity can be viewed as a weaker form of Conjecture 1.4 that, unlike
Conjecture 1.4, also applies to genera 0 and 1. Note that Conjecture 1.4 is not even
known for twists of a given curve; see related results in this direction in [S1] and
[S2].

Strong Diversity is known in either of two cases: (a) when one of the branch
points is of degree either 2 or 3 above Q ([DZ, Theorem 2(b)]), or (b) if the branch
points are all Q-rational and the normal closure of X → A1

Q satisfies some condi-
tion (for example if its Galois group is either alternating, symmetric or non-abelian
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simple group of non-square order; see [DZ]). Weak Diversity (but not Strong Diver-
sity) was also proven ([CZ, Corollary 1]) in the case that X has at least 3 geometric
points above ∞. See also Proposition 3.4, and preliminary discussion thereof, in
this paper. We also remark that in [D], Dèbes proves a version of the strong diver-
sity conjecture where one looks at fibers over n+1, . . . , n+N for some n depending
on N .

In this paper we reduce Weak Diversity to the case of a cyclic Galois cover. As
a consequence, we show that the abc Conjecture (for an appropriate number field)
implies Weak Diversity (Theorem 4.2 — although this can be proven without our
reduction, see Remark 4.4). We also show that abc implies Strong Diversity for the
case that not all branch points are Q-rational (Theorem 2.2).

We mention that Mochizuki claims to have proven the Vojta conjecture for all
curves over number fields ([M, Discussion after Theorem A]), which implies the abc
Conjecture over number fields. If Mochizuki’s proof is verified, then Weak Diversity
will hold unconditionally.

Acknowledgements

The authors thank Larry Washington for fruitful conversations, and Andrew
Granville, Ram Murty and Taylor Dupuy for very thorough and helpful answers to
their mathematical inquiries. They also thank Pierre Dèbes for useful comments.

2. Proof of the non-rational branch point case of Strong Diversity
given abc

As was mentioned above, Dvornicich and Zannier proved Strong Diversity for
f : X → A1

Q whenever f has a branch point of index 2 or 3. Combining the abc
Conjecture with a result of Granville allows us to weaken this assumption to f
having a branch point not defined over the base field.

Lemma 2.1. Assume the abc Conjecture. Then

n = O(#{p ≥ n | vp(g(m)) = 1 for some m ≤ n})

whenever g ∈ Z[x] is an irreducible polynomial of degree at least 2. If deg g ∈ {2, 3},
then the abc Conjecture is not required.

Proof. By [DZ, Eq. (1) on p. 427], the lemma is true unconditionally if vp(g(m)) = 1
is replaced by p | g(m). So it suffices to show that

#{p ≥ n | vp(g(m)) > 1 for some m ≤ n} = o(n).

If deg g ∈ {2, 3}, this follows as on [DZ, p. 427], without the abc Conjecture. In
any case, if deg g ≥ 3, this follows from [G, Theorem 8] applied to the homogeniza-
tion of g, taking N = n and M = 1. �

Theorem 2.2. Suppose that the branch locus ∆ of f : X → A1
Q contains a point

of degree ≥ 2 over Q, and that the abc Conjecture is true. Then Strong Diversity
holds for f .

Proof. Let X ′ be a plane curve such that X 99K X ′
f ′

→ A1
Q is a factorization of f

as a rational map with X 99K X ′ birational. To prove Strong Diversity for f , it
suffices to prove it for f ′.
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Since X ′ is a plane curve, we are in the situation of [DZ]. If ∆ has a point of
degree 2 or 3 over Q, then this is [DZ, Theorem 2(b)]. The only input to the proof
in [DZ] that requires ∆ to have a point of degree 2 or 3 is the result of Lemma 2.1
for some irreducible factor g of a polynomial cutting out ∆ (see [DZ, (11), p. 437]).
By our assumptions on ∆, there is such a factor of degree ≥ 2. Since we assume
the abc Conjecture, the proposition follows from Lemma 2.1. �

3. Unconditional reduction of Weak Diversity to cyclic case

In this section, we reduce Weak Diversity to the case of cyclic covers of prime
order. We do not assume the abc Conjecture.

Lemma 3.1. If a cover f : X → A1
K0

is defined over a number field K0, then
Weak Diversity for f is equivalent to Weak Diversity for any base change fK over
a number field extension K/K0.

Proof. The residue field of a point in f−1K (n) is the compositum of the residue field
of the corresponding point of f−1(n) with K. If two number fields have distinct
composita with K, they must be distinct. On the other hand, given a number field
L, there are only finitely many distinct number fields whose compositum with K is
L. The lemma follows. �

Proposition 3.2. Suppose that f : X → A1
K is a cover defined over a number field

K and L/K is a finite extension for which the Galois closure f ′ : X ′ → A1
L of the

base-change fL of f to L is geometrically irreducible and defined over L as a Galois
cover. Then to prove Weak Diversity for f , it suffices to prove it for f ′.

Proof. By Lemma 3.1, we may assume that L = K and fL = f . Let Ln (resp. L′n)
be the field generated by the residue fields of the points of f−1(n) (resp. (f ′)−1(n)).
We note that L′n is Galois over K and is contained in the Galois closure of Ln over
K. So L′n is the Galois closure of Ln over K. So if L′i 6= L′j , then Li 6= Lj . Thus
Weak Diversity for f ′ implies Weak Diversity for f . �

Proposition 3.3. Suppose f : X → A1
K is a quotient cover of g : Y → A1

K . Then
Weak Diversity is true for g if it is true for f .

Proof. Let Ln (resp. L′n) be the field generated by the residue fields of the points
of f−1(n) (resp. g−1(n)). Then Ln ⊆ L′n and the degree of L′n over the base field
is bounded in terms of g, which means that there exists d ∈ N such that each L′i
can correspond to at most d non-isomorphic Ljs. So if the number of distinct L′n
for n ≤ N is at least cN , then the number of distinct Ln for n ≤ N is at least
cN/d. �

Proposition 3.4 below was stated in [BL] as a consequence of [CZ, Corollary 1],
but we supply some more details on the proof here. Recall that if L is a number field
and S is a finite set of places containing the archimedean places, then OL,S ⊂ L is
the subring of L consisting of elements whose valuations at all places outside of S
are nonnegative.

Proposition 3.4. Let f : X → A1
K0

be a branched cover defined over a number

field K0. If the smooth projective completion of f has at least three Q-points over
∞, then Weak Diversity holds for f .
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Proof. Embed X ⊂ Am
K0

as an affine curve. If K/K0 is a finite extension and S is a
finite set of places of OK including the archimedean places, [CZ, Corollary 1] implies
that the number of OK,S-integral points of X is bounded in terms of the degree of K
and the cardinality of S. Now, since the ring extension K0[X]/K0[t] corresponding
to f is generated by roots of finitely many monic polynomials over K0, there is a
finite set of places S0 of K0 such that the same is true for OK0,S0 [X]/OK0,S0 [t].
Taking S to be the set of places of K lying above S0, we see that every K-point
of X lying above an OK0,S0

-point of A1
OK0,S0

is in fact an OK,S-point. Thus, the

number of such points is bounded solely in terms of the degree of K.
Since any field L arising as the residue field of a point of f−1(n) for n ∈ N has

degree at most deg(f) over K0, there is an absolute bound, depending only on f ,
on the number of such points with residue field L. This immediately implies Weak
Diversity for f . �

Proposition 3.5. To prove Weak Diversity for a cover defined over a number field
with a given branch locus ∆, it suffices to prove it for cyclic covers of prime order
with branch locus contained in ∆.

Proof. By Lemma 3.1 and Proposition 3.2, we may assume the cover is Galois for
some group G. If the cover has at least three Q-points defined over ∞, then the
proposition follows from Proposition 3.4, so assume there are at most two such
points. Then the stabilizer of one of these points is a cyclic group of index at most
2 in G. So either G is cyclic or G has Z/2 as a quotient. In either case, G has a
cyclic group of prime order as a quotient, and the quotient cover has branch locus
contained in ∆, so we are done by Proposition 3.3. �

Remark 3.6. The most difficult case for the Weak Diversity Conjecture seems to
be that of a quadratic cover. In this case, it is tantamount to showing that for a
separable polynomial f ∈ K[x], the number of distinct square classes in the set
{f(1), . . . , f(N)} is at least cN for some constant c > 0 and all N .

4. Proof of Weak Diversity given abc

Lemma 4.1. Let K be a number field with ring of integers OK , and let f(x) ∈
OK [x] be a non-constant polynomial. Then there is a constant c, depending on
f , such that for any ideal I ⊆ OK , the set {n ∈ N | (f(n)) = I} has cardinality
bounded by c.

Proof. It suffices to bound the number of n such that NK/Q(f(n)) equals any par-
ticular constant. But NK/Q(f(n)) is a polynomial in n over Q, whose absolute
value is easily seen to go to ∞ as n→∞. Thus it is non-constant, and the lemma
follows. �

Theorem 4.2. Let f : X → A1
K be a geometrically irreducible branched cover over

some number field K, and let L be a number field such that each branch point of f
is L-rational. Then the abc Conjecture1 for L implies Weak Diversity holds for f .

Proof. By Lemma 3.1 we may, without loss of generality, assume that L = K. By
Proposition 3.5, we may assume that f is a Z/p-cover, for some prime p. After a
base change, and using Lemma 3.1 again, we may assume that f is given by an

1See, e.g., [V, p. 84]
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equation yp = g(x), where g(x) ∈ OK [x] is a polynomial with roots exactly at the
branch points and all roots of g(x) have order at most p− 1.

Let h(x) ∈ OK [x] be a separable polynomial with the same leading coefficient
and roots as g(x). By the number field version2 of [G, Theorem 1], there exists
a positive constant c and an ideal I ⊆ OK such that for large enough N , the
ideal (h(n))I−1 ⊆ OK is squarefree for at least cN elements n ∈ {1, . . . , N}. By
Lemma 4.1, after replacing c by a smaller positive constant, we can find cN elements
n ∈ {1, . . . , N} such that (h(n))I−1 is squarefree and the ideals (h(n)) are pairwise
distinct. After replacing c by yet a smaller constant, we may assume that the prime
factorizations of the ideals (h(n)) are pairwise distinct even when prime factors of
I and of (p) are ignored.

Now, h(n) | g(n) | h(n)p−1, so the primes ramified in K(g(n)1/p)/K, other than
those dividing I or (p), are exactly those primes dividing (h(n)). Thus the fields
K(g(n)1/p) are pairwise distinct, which proves Weak Diversity for f . �

Remark 4.3. Combining Theorem 4.2 with Theorem 2.2, we see that assuming the
abc Conjecture over Q suffices to prove Weak Diversity for covers defined over Q,
even if the branch locus does not consist of Q-points.

Remark 4.4. A similar argument to prove Theorem 4.2 can also be made combining
the paper [G] with arguments from [DZ] using the discriminant of the cover f as a
substitute for the Kummer generator g(x) without first reducing to the cyclic case.
Since [DZ] is is written in the context of covers over Q, we provide the above proof
so as not to have to adapt their result.

5. The Uniform Faltings’ Theorem and Weak Diversity

In this section, we prove the following proposition.

Proposition 5.1. Let f : X → A1
K be a Galois branched cover over a number field

K with g(X) ≥ 2. Then Conjecture 1.4 implies Weak Diversity for f .

Proof. Let G be the Galois group of f and let K be a field Let T be a right G-torsor
over K. There exists a twist XT of X, defined over K such that for K-rational
points P of A1

K , the restriction X ×A1
K
{P} is isomorphic to T as a right G-torsor

iff XT has a K-rational point above P . See, for example, Lemma 3.3.1 of [H],
and surrounding discussion. Since all of these twists have the same genus and are
defined over K, Conjecture 1.4 implies that there is a uniform bound on the number
of rational points on any given twist. This implies that for any given G-extension
L/K, there is a uniform bound on the number of K-rational points {P} of A1

K

such that f−1(P ) is a point with residue field L. Combining this with Hilbert’s
irreducibility theorem as in Remark 1.3, we obtain Weak Diversity for f . �

Remark 5.2. Proposition 5.1 is more or less the same as the second statement in
[D, Theorem 1.3]. The first statement of that same theorem shows that a weaker
statement than Weak Diversity holds unconditionally.

2See the remark on [G, p. 993]
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[D] Pierre Dèbes, On a problem of Dvornicich and Zannier, Acta Arith. 73 (1995), no. 4,

379–387. MR1366044
[M] Shinichi Mochizuki, Inter-Universal Teichmuller theory IV: Log-volume computations and

set-theoretic foundations, 2012. Preprint.

[G] Andrew Granville, ABC allows us to count squarefrees, Internat. Math. Res. Notices 19
(1998), 991–1009. MR1654759

[V] Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in

Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR883451
[H] Hilaf Hasson, Minimal fields of definition for Galois action, J. Pure Appl. Algebra 220

(2016), no. 9, 3327–3331. MR3486304
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