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Abstract. Propensity score based methods applied to mitigate the bias in
treatment effect estimation incurred by self-selection on observables, usually
follow non-parametric matching approaches. Parametric estimation, performed
by regressing solely on propensity scores, is suggested in theory, but is not
generally applied. However, when appropriate, a parametric approach is preferable
to a non-parametric or semi-parametric one as it provides more information,
insight and inference on the same data set. We test parametric regression
method through simulations, creating different scenarios of system-determined
treatment assignment. It results that regressing only on propensity score, is
not sufficient to properly mitigate the treatment estimation bias. We consider
the propensity score as an omitted variable, which when added into the model,
makes covariates and the binary treatment of interest conditionally independent.
Propensity score enters the model as a generated regressor, because it is
created in a separate modeling stage, and provides for unbiased and consistent
estimation of treatment effects. This estimation is superior to the semi-parametric
ones in our tests. Two real data with potential self-selection bias problems are
analyzed to illustrate some application issues and to point out in particular
the need for specific propensity scores application at any given situation.

Keywords: self-selection bias, propensity score, promotional campaign effect
estimation, conditional independence, ignorability of treatment.

1. Introduction

Amain problem in evaluating promotional campaign effect on individual responses
is the violation of the sampling randomness principle. The campaign participation
is not assigned at random to customers. It is rather a decision taken by them.
Consequently, the estimate of campaign effect can, under given circumstances, be
biased. Literature examples of applications correcting for self-selection bias are
numerous and helpful (e.g., [1, 2] provide a good view on the issue), but they
only work well within their context and, as pointed out by Heckman, “there is no
context-free universal cure for the selection problem. There are as many cures as
there are contexts” [3]. For the data analyst this usually creates both confusion
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and the known dilemma about the usefulness of analysis after the results are
delivered [4]. In fact, this confusion is a reflection of the discrepancies and disputes
among the leading researchers regarding this topic (the book “Drawing inferences
from self-selected samples” (2000) [3] is a clear illustration; see also Conniffe, Gash,
and O’Connell for a view of disputes [5], or Smith and Todd [6], for a particular
example). Meanwhile, promotional campaigns are in the order of the day in many
business administration groups, which are in need for an established guideline of
promotional campaign effects estimation.

The aim of this paper is to show our experiences in promotional campaign effect
estimation, with some references to the hospitality industry. Many campaigns with
different incentives are launched repeatedly over the business year. Their audience,
including a loyalty program membership, is broad and campaign participation is
not sporadic. Both participant and non-participant group sizes are considerable,
in contrast with some clinical studies in which the self-selected treatment group is
minuscule compared to the control. The nature of incentive directs the campaign
appeal to certain groups of individuals, who for one reason or another, are more
interested in what is offered. When exposed to the promotional offer, it is the
individual that makes the decision to participate or not. We assume that both
participants and non-participants have the same odds to be exposed to the offer.
While conscious that this cannot hold all the time and for everybody true, daily
advances of communication technology, through which these offers are conveyed,
make this assumption not particularly strong. One basic campaign incentive is to
offer some reward in exchange of some purchase. What the business administrators
primarily want to know is the real effect of the campaign, which is the difference
in sales between the actual figures and what those would have been in the absence
of the promotion.

This conditional statement (both literally and statistically) translates to an
estimation procedure adjustment, which is presented at some detail in the next
section. In this paper we consider the indispensable assumption of treatment
conditional independence and the related propensity score based methods, which
usually estimate the average treatment effect with self-selection on observables,
non-and-semi-parametrically [7]. Our aim is rather focused on the parametric
method, i.e., regression analysis on propensity score (probability of participation
given covariates), which shifts the idea of “conditioning on” into “regressing on” this
variable.

We maintain a generalized linear model framework on a four-component system:
response, covariates, treatment (which represents a promotional campaign in our
context), and the generated propensity score. The participation decision model that
generates the latter is outlined in its most common application, logistic regression,
whose performance affects the overall analysis performance in an interesting way:
logistic fit must be “good but not excellent”.

The necessity of propensity score presence in the model is justified by its role in
making the treatment of interest and covariates conditionally independent, as their
co-dependence is a source of estimation bias. Meanwhile, the model based solely on
generated propensity scores without covariates is, in fact, a regression on the latter
already organized in a given functional form by the generating model, which does
not allow for the parametric flexibility of a multivariate model.
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To test the validity of our assumptions we simulate situations in which the
dependence of the binary treatment variable on systematic components, i.e., the
extent of self-selection, varies over a wide range, from almost completely deterministic
to virtually stochastic, on a pretty wide interval of participation rates. In all these
scenarios the known effect of treatment is maintained constant and independent,
so that its estimation is not affected in any way by factors other than self-selection
extent and participation rates of each scenario (controlled circumstances, like extensive
simulations with ideal conditions and deviations from these remain the only verifying
tool in estimation of treatment effects, in absence of social experiments; see, e.g., [8,
9]).

Simulation results show that adding the generated propensity score to a generalized
linear model substantially increases the model ability to mitigate or eliminate bias
in treatment effect estimation. In addition, propensity score adds a very important
dimension to the interpretative power of the model, as it directly links the intention
to participate in the promotional campaign with the gains from it, or in general
terms, marketing with profit. This way of model conception should become a
routine in estimation of campaign effects in observational data, not only for the
possible bias in the effect estimate, but also as a way to get the proper insight and
inferences in the two components of campaign success: participation rate and its
gains at individual customer level. “Gains” here refer to the immediate return on
campaign investment and not to the other forms of gain that are of long-term effect
(e.g., building brand name or value). Having a “score” in the mean structure enables
the customer segmentation directly, adding the categorical variable into the model
in form of the separate intecepts for each segment, or in significant interaction
with other covariates. This increases the model flexibility to explain the response
variability by allowing the parameters to vary across segments.

We analyze two real data sets with promotional campaign to illustrate the
benefits mentioned above, as well as some applicative issues.

2. Estimation of promotional campaign effect with non-random
participation

Let yik denote the amount of sales (or “the performance”) during the promotional
period for customer “i”, who participated in campaign or not as indicated by the
participation indicator d: d = k, where k = 1 for participants and k = 0 otherwise.
Population I of customers {i : i ∈ I} is characterized by two conceptually distinct
random variables, yi0 and yi1. The conditional variable yik|d implies four distinct
subpopulations: yi0|d = 0, yi1|d = 0, yi1|d = 1 and yi0|d = 1, of which (yi1−yi0)|d =
1 and (yi1−yi0)|d = 0 are unobservable. The observed outcomes yi(obs) = (yi0|d = 0,
yi1|d = 1) are expressed through the indicator d as:

(1) yobs = (1− d) · y0 + d · y1 = y0 + d · (y1 − y0)

(henceforth the subscript i will be dropped, unless explicitly written). The random
decision variable d is binomial; each individual decision on participation is a Bernoulli
trial. (The effects of treatment with more than two distinct levels, be it categorical
or even continuous, have been also studied [10, 11]). It is believed that the relation
between d and yobs is causal. The effect of d on yobs is the average promotion effect
(APE). The average promotion effect on participants APE1, is the effect of business
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interest, and the expected value of the following conditional difference:

(2) APE1 = E[y1 − y0|d = 1]

Analogously, APE0 = E[y1 − y0|d = 0] estimates the change in response due to
promotion for non-participants had they participated. The unconditional expectation
APE = E[y1−y0] estimates the promotion effect on a randomly selected individual
in I, participant or non-participant. Both APE0 and APE are not business relevant.
Scenarios like “what would have happened if non-participants participated” ingrained
in both APE0 and APE, calculate the possible gains at a better participation level,
but in this case the promotion itself would not be the same. Under the given
competition, it would either be with a better incentive, or better managed and
conveyed to customers. APE is a “d probability weighted average” of APE1 and
APE0:

APE = P [d = 1] ·APE1 + P [d = 0] ·APE0.

Clearly,
APE = APE0 + P [d = 1] · (APE1−APE0),

which shows that:

APE1 = APE0⇔ APE1 = APE0 = APE.

Another estimator, which relates the d effect with y level is “the quantile treatment
effect” [12], which will not be treated here.

The events d = 1 and d = 0 are mutually exclusive at individual level. y1|d = 1
and y0|d = 0 are observable, or facts. Their counterparts, y0|d = 1 and y1|d = 0
cannot be observed; they are “counterfacts”, providing a particular setting for causal
inference [13, 14, 15]. The problems in estimation for such setting come from the
counterfactual y0|d = 1, which appears in the very basic relation (2):

APE1 = E[y1 − y0|d = 1] = E[y1|d = 1]− E[y0|d = 1]

Every cross sectional data, experimental or observational, faces this situation:
the same experimental or observational unit cannot be observed simultaneously
in both control (untreated) and treated state. In experiments, the treatment
assignment is applied as a rule completely at random across units and the response
variables (y1, y0) or covariates X (here defined as variables temporally prior to
promotion [14]), do not affect treatment assignment. Therefore, we have y and d
unconditionally independent: P [d|y] = P [d].

Also, X and d are (by design) independent: P [d|X] = P [d], or yk ⊥ d. yk|d = k
is a random sample from yk. E[yk|d] = E[yk] and most importantly, (y1 − y0) ⊥ d,
so that:

(3) APE1 = E[y1 − y0|d = 1] = E[y1 − y0] = APE

APE1 equals APE and APE0 if d is randomly assigned to individuals; APE1
in (3) in that case could be estimated without any correction for selection bias and
non-treated individuals are readily controls for the treated. However, in observational
data with self-selection, d is not unconditionally independent of yk, i.e., yk|d = k
is not a random sample from yk, E[yk|d = k] 6= E[yk] and most importantly,
E[y1 − y0|d = k] 6= E[y1 − y0]. Symmetrically, P [d|y] 6= P [d] and, when y is
correlated with X, P [d|X] 6= P [d].

Despite the crucial difference in variable independence, observational data follow
the same analysis approach as experimental data. The untreated units are also used
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in place of the counterfactual controls, but a straightforward use of them as control
group, will not produce necessarily an unbiased estimator of treatment partial effect.
The inequality E[y0|d = 1] 6= E[y0|d = 0] incurs bias, which equals the difference
between the two expectations. Identifying the counterfactual E[y0|d = 1] by
available social experimental data [16], serves as a reliable criterion of the truth for
the otherwise unobservable counterfactual. This is a luxury the analysts normally
do not have. The correlation between response and treatment is the first hurdle
to overcome for unbiased and consistent estimation in observational data. This
is realized by the conditional (on X) independence assumption or “ignorability of
treatment” (henceforth IT) assumption as termed by Rosenbaum and Rubin (1983)
in their seminal paper “The central role of the propensity score in observational
studies for casual effects” [17]. This assumption states that conditional on X, d and
y are independent. That is, citing Wooldridge (2002) [26], “even if (y0, y1) and d
might be correlated, they are uncorrelated once we partial out X”. This assumption
is strong and requires d to be a deterministic function of (observable) covariates,
which brings us to the other assumption term “selection on observables”. IT, as a
conditional independence assumption, requires:

(4) P [d = 1|y0, y1, X] = P [d = 1|X]

The last term, framing a joint distribution of d and X, is called the propensity
score:

(5) P [X] ≡ P [d = 1|X] = E[d|X]

A symmetrical expression of (4) is P [y0, y1|d = 1, X] = P [y0, y1|X]. Loosely,
the last expression is perceived as stratifying the observable (q × h) matrix X =
(x1, x2, . . . , xh) of a sample of size N , in q unique submatrices Xj , where j ∈ [2, N ]
and max(q) = N , such that there is no difference in X within a given Xj . Let
Xjk be a subset of Xj collecting observations with d = k. q × k groups of size
njk are formed, such that i ∈ groupjk ⇔ Xijk = Xjk. The respective responses
yijk are then random draws from yjk. Variables in {yj , Xj , dj} are unconditionally
independent. Even if yobs is a deterministic function of X: E[yobs] = f(X) for
some function f , within any given Xj , X cannot be the source of the differences in
yijk; the only observable difference source is d. So, E[y1|Xj , d = 1]−E[y0|d = 0] =
E[yj1]−E[yj0] = αj estimates the effect of d given Xj . The practical problem with
this estimation rests in getting reasonable subsets Xj . If at least one of the elements
xg, g = 1, . . . , h, is continuous, then max(q) = N , and q = N ⇔ max(njk) = 1.
Also, it is well possible that njk = 0 for some j. The latter makes E[yjk] inestimable.
If xg in X are all discrete variables, then q =

∏h
g=1 lg, where l is the number of

levels of gth variable. The exact matching technique is based on the above logic.
More generally, it is sufficient to group observations so that distribution of X is not
statistically different within each group, which is a much more relaxed condition
than exact matching. In order to have reliable estimates of E[yjk], a certain sample
size njk is necessary, which translates into q getting smaller. Both components
E[yjk] and the respective q, should be tested, as H0 : E[yjk] = µyjk + |c|, for
some c, where µyjk is estimated by E[yjk], i.e., the mean of (y|Xj , d = k). The
relation between sample size and detection power of the test represented by |c|, for
a non-ratio variable is njk = c−2 ·

(
zα

2
+ zβ

)2
· σ2

jk, where zα2 and zβ are standard
normal variables with cumulative density function (cdf) equal to (1− α

2 ) and (1−β),
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respectively, α is the significance of the test (probability of rejecting H0 when H0

is true is not larger than α), β is the power of the test (probability of accepting
H0 when H0 is false is not larger than β), and σ2

jk is the true variance of yjk.
Reasonably small |c| are desirable, but this may require njk that cannot maintain
equal distributions of Xj1 and Xj0. Any increase in h decreases njk able to realize
equal distributions of Xq1 and Xq0. Small njk produce non-reliable E[yjk] (i.e.,
unacceptably large |c|) and at njk = 0, E[yjk] is inestimable. This is the “curse of
dimensionality”. Propensity score came as a solution to this problem: it reduces the
dimension of matching from h to 1, and y stratification is based on P [X] in place
of X. Rubin and Rosenbaum [17] showed that (y1, y0) ⊥ d|X ⇒ (y1, y0) ⊥ d|P [X].
The proof can be derived by iterated expectations [25]. We prefer to give the
following proof, which is probability-based. If ignorability of treatment holds, then:

y ⊥ d|X ⇔ P [y|d,X] = P [y|X],

or based on Dawid’s symmetry rule of conditional independence [24], y ⊥ d|X ⇔
P [d|y,X[= P [d|X].

Conditioning on P [X]: P [d|y, p[X]] = P [d|y, P [d|X]] = P [d|y, P [d|y,X]] =
P [d|y] ⇔ d ⊥ y|X ⇔ y ⊥ d|X. The use of propensity score is not a “stand
alone” solution. It does not work well if IT assumption is violated. The violation
extent, quantified by the differences ∆d = P [y|d,X]− P [y|X] or ∆d = P [d|y,X]−
P [d|y], depends on X quality of information. Practically, it is more reasonable to
expect mitigation than elimination of bias. The trade-off between the observable
multidimensional X and the one-dimensional P [X] is that we do not observe the
latter. What we do not observe, we estimate. A consistent estimator of P [Xj ]

is P̂ [Xj ] =
nj1

nj1 + nj0
. The size of njk poses again the problem of reliability of

P̂ [Xj ]. Moreover, the IT assumption itself does not leave much of a choice; it
is indeed indispensable for unbiased estimation. Principally, the unconditional
independence among variables, which does not hold on the whole data set, is
assumed to hold in data subsets. Rosenbaum and Robin defined propensity score
as “the coarsest balancing score”, and a balancing score as “a function b(X) of the
observable covariates X such that the conditional distribution of X given b(X) is
the same for the treated and control units”: P (X|p(X), d = 1) = P (X|p(X), d = 0),
or d ⊥ X|p(X) [17]. Intuitively, by grouping on P [X], we try to filter out the role
of X in y variability, keeping only that of d. Conditioning on propensity scores
realizes the independence of treatment on (i) response y, and (ii) information X.
P̂ [X] as function of X can take on as many distinct values as v : v ∈ [max(lxk), N ],
where lxk is the number of distinct levels for covariate xj in X, j = 1, · · · , k; a
continuous xk can take on up to N different values. Therefore the exact matching
on propensity scores might become impossible.

The estimation of P [X] groups can be implemented in analogy to group matching.
Let g denote the number of P̂ [X] strata, and stratum q an interval of P̂ [X]
values (pq1, pq2), q = 1, · · · g. ∆ = pq2 − pq1 is the caliper breadth, and i ∈ q if
P̂ [X] ∈ [pq1, pq2]. While all individuals sharing the same Xi are in the same group
q, the reverse is not necessarily true: not all P̂ [X] ∈ [pq1, pq2] stem necessarily
from the same X. It is even possible that exactly the same value of P̂ [X] is
generated by more than one subset Xk of X: P̂ [Xi] = P̂ [Xj ] = · · · = P̂ [Xp] , where
i 6= j 6= k 6= · · · 6= p. In a given stratum q might well reside differently distributed
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subsets of X. However, the distributions of Xq1 = Xq|d = 1 and Xq0 = Xq|d = 0
are expected not to differ statistically. The following is a simple illustrating example
(more details on a reproducible SAS code is given in the Appendix). Three discrete
independent variables with each three levels “A”, “B” and “C” determine, through
a latent variable, a binary outcome. The propensity scores are calculated and
presented in Table 1.

Table 1. Simulated propensity scores on 3 discrete variables (1,
2, 3) with 3 levels each (A, B, C).

Group
“q”
(No.)

Estimated
P[Xq]

Variable
Classes

Frequency Total New
Group
Frequncy

New Group
Participants
(d = 1)

1 0.053 C,B,C 95 95 5

2 0.123 A,A,A 349 349 43

3 0.13 C,C,C 576 756 99
4 0.133 C,B,B 180

5 0.15 B,A,A 220 220 33

6 0.238 B,B,B 450 450 107

7 0.315 B,A,B 130 130 41

The possible number of distinct P̂ [Xp] values is 33 = 27, but only seven are
observed. In each of the seven groups we hope yk|d = k to be a random draw from
yk. The independence of X and d given P̂ [Xp] is guaranteed: P [d = 1|Group =

q, P̂ [Xq]] = P [d = 1|P̂ [Xq]]. We assume IT: P [yqk|d = k, P̂ [Xq]] = P [yqk|P̂ [Xq]].
The size of “treated subgroup” of group 1, i.e., “promotion participants”, is expected
to be 95 · 0.053 ≈ 5. With such a small sample size of participants, the inference
on this group would not be reliable, even if IT assumption holds. To reduce the
number of propensity score strata, we could join together groups 3 and 4. P̂ [Xq] ≈
0.13 acts as balancing score, because in the new group with X made of “C,C,C”
and “C,B,B”, the distribution of X will be statistically the same, disregarding

d. In concrete figures: P [X = ”C,C,C”|NewGroup, d = 1] =
576 · 0.130

99
≈

0.75, which is approximately the same as P [X = ”C,C,C”|NewGroup, d = 0] =
576 · (1− 0.130)

756− 99
≈ 0.76. We would add groups 2 and 5 as well, if the used P̂ [Xq]

group interval were, say, [0.10, 0.20). The same probabilities calculated above would
be 42.8% and 43.6%, respectively, which are still pretty close. If we add group 6,
these probabilities become 23.8% and 34.3%, respectively, which is not as close any
more. The balancing property of propensity score is easily testable by conducting
ANOVA analysis, where xg is the dependent variable and the propensity score
group is the independent categorical variable (with as many classes as groups). IT
assumption, though, cannot be tested straightforwardly. To reach balanced X, the
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strata might need to get narrower. Also, fine-tuning matching within a caliper
with the help of additional adjustments (e.g., Mahalanobis distance between X
elements [18]) is used to account for unbalanced X). In the oversimplified example
above there was no propensity score, whose corresponding observations were not
observed at both treated and untreated states. Practically, (in particular when at
least one element of X is continuous) we encounter unmatched observations of given
propensity score values falling everywhere in the ranked vector of propensity scores.
Heckman et al. [16] define three components of bias based on X for participants and
non-participants: (i) difference in support, (ii) difference in distribution and (iii)
selection bias at common values of X. Matching on balanced X or trimming out
parts of X that are not in common supports eliminates the first two components,
while the third one remains. Non-exact matching and the fact that propensity score
methods deal only with selection on observables, while selection on unobservables
might be quite an important source of bias, are main reasons why propensity
score method has been often (sharply) criticized [3, 5, 19, 20]. However, there
is interesting evidence that the propensity scores can correct for selection bias on
unobservables as well [21]. The additional assumption introduced by Rosenbaum
and Rubin [17],

(6) 0 < P [X] < 1,∀X

that turns the “ignorability of treatment” assumption into the “strong ignorability
of treatment”, states that for any given X there exists at least one individual,
whose participation decision differs from that of the other individuals sharing the
same X. However, in order to allow for a certain number of participants (P [X]
near 0) or non-participants (p[X] near 1), a more reasonable formulation would be:
0 < m < P [X] < 1−m , for somem. Implementation of conditioning on propensity
score to estimate casual treatment effect leads to a relatively simple semi-parametric
two-stage procedure: (i) Compute P̂ [X]; (ii) stratify on intervals of ranked P̂ [X],
change these intervals until no statistical difference between P̂ [X] middle scores
and X of participants and non-participants is reached within each interval (caliper),
and get ÂPE as the average difference between y means of treated and untreated
observations. To get ÂPE1, apply weighted average of differences, where weights
equal the number of participants in each caliper [22, 19, 23, 25]. P̂ [X] is also
used as a tool (weight) in other semi-parametric APE estimation methods. When
conditioning on d and X, the semi-parametric formulas will contain the conditional
density of d, which makes P̂ [X] a common term therein. Four semi-parametric
formulas for APE1 estimation follow, as proposed by:

A. Wooldridge [26]:

ÂPE1 =

∑N
i=1

yi·(di−P̂ [X]

1−P̂ [X]∑N
i=1 di

B. Hirano, Imbens and Ridder [27]

ÂPE1 =

∑
i P̂ [Xi] ·

[
yi·di
P̂ [Xi]

− yi·(1−di)
1−P̂ [Xi]

]
∑
i P̂ [Xi]

Albanian J. Math. 11 (2017), no. 1, 35-71.

http://archives.albanian-j-math.com


Jimmy Cela 43

C. Ridgeway, McCaffrey, Morral and Lim [28]:

ÂPE1 =

∑
y1

Ny1
−
∑
y0 · w0∑
w0

where

w0 = (1− d) · P̂ [X]

1− P̂ [X]

D. Hirano and Imbens [30]

ÂPE1 =

∑N
i=1

di·yi
P̂ [Xi]∑N

i=1
di

P̂ [Xi]

−

∑N
i=1

(1−di)·yi
1−P̂ [Xi]∑N

i=1
1−di

1−P̂ [Xi]

The performance of these estimators is given in Table 8 (see Appendix). Parametric
estimation of P̂ [X] and of ÂPE1(X) or ÂPE(X), involves related functional forms
of X.

APE(X) =

∫
(E[y1|X, d = 1]− E[y1|X, d = 0])dFX(x)

and

(7) [APE1(X) =

∫
(E[y1|X, d = 1]− E[y0|X, d = 0])dFX|d=1(x)

where FX is the cdf of X [29]. Assuming IT and with P̂ [X] = E[d|X] = g(X), it
results:

APE1(X) = EX|d=1

[
E[y1 − y0|X, d = 1

]
=

= EX

[
E[y1 − y0|X

]
=

∫
E[y1 − y0|X]dFX|d=1)x)

=

∫
f ′(X)dFX|d=1(x) = f(X)

and

APE1(P̂ [X]) = EP̂ [X]|d=1

[
E[y1 − y0|P̂ [X], d = 1

]
= EP̂ [X]

[
E[y1 − y0|P̂ [X]

]
=

∫
E[y1 − y0|P̂ [X]]dFP̂ [X]|d=1)(P̂ [X])

=

∫
h′(P̂ [X]dFP̂ [X]|d=1(P̂ [X])

=

∫
h′′(X)dFX|d=1(g(x)) = h(X)

for some functions g, f ′, f ′′, h′, h′′ and h. ÂPE and ÂPE1 as functions of X or
P̂ [X] vary across individual groups sharing different X or P̂ [X]. Not only (y1, y0),
but their difference (y1 − y0) as well, is a function of X. Under the assumption of
constant APE over the whole population, E[y1|X] = E[y0|X] +APE and APE =
APE1. The last assumption is very relaxed, but also very convenient for parametric
modeling, leading to switching regression:

(8) g(E[yk|X, d = k]) = h(X) + α̂ · d
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for some functions h and g, where α̂ is the parameter of interest. A widely used
application of (8) is the generalized linear model:

(9) g(E[y]) = l(X) + α̂ · d

where l(X) =
∑k
i=0 bi · fi(X) is a linear combination of X, f0(X) = 1 to guarantee

an intercept, fi(X) is any function of X, g is some function, like identity, log etc.,
and ÂPE1 = g−1

(
l(X)+α̂

)
−g−1

(
l(X)

)
. Note that l(X) is linear in the coefficients

of fi(X), whereas fi(X) can take any form, linear or non-linear in X. Model in (8)
is referred to as the “kitchen sink regression” [26]. Its functional form h(X) is very
flexible; this gives “kitchen sink regression” virtually the maximum prediction power
for the given X. At the same time it is not exactly a convenience experimenting
endlessly many forms of h(X) until the “desired” result is obtained, which can add
to the model a heavy dose of subjectivity. Based on the IT assumption, in order
to to make y and d independent, conditioning on P [X] is as good as conditioning
on X. In analogy to matching based on P̂ [X], which substitutes for that on X,
regressing on P̂ [X] is suggested as alternative to “kitchen sink regression” in two
forms: regressing yi on

(10) 1, di, P̂ [X]

or

(11) 1, di, P̂ [X], di · (P̂ [X]− µ̂p)

where µ̂p is the mean of P̂ [X] [26], making two very strong assumptions: that
APE(X) = APE1(X), and that they are constant across X. Note that in the
semi-parametric estimation of APE or APE1, it is not assumed that these are
equal and constant across strata. The parameter estimate of di is expected to be a
consistent ÂPE and ÂPE1 [26].

Procedures (10) and (11) suggest a two-stage model, where the first stage estimates
p(X). Modeling P [X] as the probability of participation conditioned on X can be
realized by different models and assumptions. For example, Ridgeway suggests
boosting algorithms (see his dissertation thesis [31] and other publication titles by
this author), whereas Minkin [32] suggests semi-parametric methods using support
vector machines. The usual parametric way models d through an underlying latent
variable ν:

(12) νi = XΓ + υi, di = I(ν > 0)

where Γ is a vector of coefficients γ1, γ2, · · · , γk, υ is a random error term and
I(∆) is the indicator function showing that d = 1 if ν > 0, and d = 0 otherwise.
The random component νi makes the decision process stochastic. It allows for
introducing the individual specific unobserved characteristics that affect decision.
The condition ν > 0 is equivalent toXΓ > −υ. The last inequality shows the weight
of observables and unobservables, respectively, in explaining selection individually.
The assumption that υ follows a standard logistic distribution is the most popular
one [26]:

(13) P [d = 1|X) = P̂ [X] = P [υ > 0] = P [ν > −XΓ) = 1−G(−XΓ) = G[XΓ)

where G is cdf of ν.
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The “competition” between XΓ and ν in explaining d reflects the extent at which
the data can predict participation. A “good” data set in the sense of participation
prediction does not let much to be explained by the unobservable ν, making d a
deterministic function ofX. IT assumption is satisfied. Otherwise, the participation
is determined by the unobservable ν. The models in (10) and (11) include P̂ [X] as
an independent variable and become very attractive from the business managerial
perspective. While X often bears information with only descriptive value, the
propensity of participation P [X] acquires an economically well-defined meaning: it
scores the activity rate of customers and put the latter in relation with the customer
performance. The model in (11) can be written as:

(14) f(E[y]) = λ̂0 + λ̂1 · P̂ [X] + λ̂2 ·
(
P̂ [X]− µp

)
+ λ̂3 · d

λ̂1 estimates the partial effect of ˆP [X] on f(E[y]), that is the relationship between
customer performance and their activation behavior. λ̂2 depends on the change
of customer performance across the propensity scores range. It allows for shape
flexibility in f(E[y]) curve. The variable of interest λ̂3, is the difference in f(E[y])

for two customers with the same P̂ [X] but different participation decision d. This
condition is reached when logistic regression “does not work very well”, as it erroneously
predicts equally two different outcomes. A hypothetical perfectly working logistic
regression, which predicts right every single observation, would mean failure to
propensity scores method. A perfect participation prediction does not allow any
estimation of counterfactual E[y0|d = 1] based on real data. As Heckman points
out [33], missing data (unobserved counterfactuals) give rise to the problem of
casual inference, but missing data (unobservables υ) are also required to solve the
problem of casual inference.

3. Parametric estimation of APE1

Estimating P̂ [X] with a logistic regression, as given in (13), leads to the functional

form: P̂ [X] =
exp(X̂Γ)

1 + exp(X̂Γ)
, where X is the matrix of covariates and Γ̂ is the

respective vector of parameter estimates. As such, the models in (10) and (12)
are versions of “kitchen sink regression”. For example the model in (10) turns out
nonlinear in X coefficients:

E[y|X] = b̂0 + b̂1 · P̂ [X] + b̂2 · d

= b̂0 + b̂1 ·
exp(X̂Γ)

1 + exp(X̂Γ)
+ b̂2 · d

=
b̂0 + (b̂0 + b̂1) · exp(X̂Γ)

1 + exp(X̂Γ)
+ b̂2 · d

=
b̂0 + ĉ · exp(X̂Γ)

1 + exp(X̂Γ)
+ b̂2 · d

where ĉ = (b̂0 + b̂1).
The expression above is not necessarily the best functional form of X as a control

function. Γ̂ vector is produced by an equation not related to y; we could get the
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same Γ̂ for quite different y. Therefore regression on P̂ [X] lacks in flexibility. This
is the price paid to dimension reduction.

Intuitively, condition on both X and P̂ [X] makes the model more flexible.
Because the generalized linear models are by and large the most frequently used
models, we will focus on the model (9): g(E[y]) = l(X) + α̂ · d. Assuming IT,
there are no simultaneity issues in the model. However, X and d are co-dependent:
E[d|X] 6= E[d]. This might be a bias source in APE estimation. In analogy with
the conditional independence between y and d given X, we seek a third variable,
in presence of which X and d are conditionally independent. The best candidate,
as mentioned above, is P̂ [X]: P (d|X, P̂ [X]) = P (d|P̂ [X]), i.e., d ⊥ X|P (d|X);
P (d|X, P̂ [X]) = P (d|X), i.e., d ⊥ P̂ [X]|X; P [P̂ [X]|X, d] = P [P̂ [X]|X), i.e.,
X ⊥ P̂ [X]. In the multivariate set {X, d, P̂ [X]}, all components are conditionally
independent, and each plays its role in the new model:

(15) g(E[y] = l(X) + γ · P̂ [X] + α̂ · d

X is the finest balancing score in Rosenbaum and Rubin definition [17]; d is the
variable of interest; P̂ [X] makes X and d conditionally independent; IT assumption
makes y and d independent through the presence of X. The equation in (15)
becomes non-linear in X coefficients:

g(E[y]) = l(X) + γ̂ · P̂ [X] + α̂ · d

=

k∑
i=1

xi · b̂i + γ̂ ·
exp
(∑k

i=1 xi · δ̂i
)

1 + exp
(∑k

i=1 xi · δ̂i
) + α̂ · d

=

∑k
i=1 xi · b̂i + exp

(
(
∑k
i=1 xi · δ̂i) + ln(

∑k
i=1 xi · b̂i)) + γ · exp

(∑k
i=1 xi · δ̂i)

1 + exp
(∑k

i=1 xi · δ̂i)

This nonlinear model is much more involved than the generalized linear model (15),
which produces the same α̂. Generalized linear model in (9) is a model with an
omitted variable [34], whereas the proposed model (15) is a generated regressor
model [35]. What is missing in (9) is a variable responsible for the relationship
between the inclination to participate and the response, when this exists. The
estimation bias is incurred if the absent variable is co-dependent with both response
and participation status. Inclination to participate enters the equation as a scaled
variable. The propensity score scales it from 0 to 1 at individual level. It characterizes
theX groups and not the individual, bearing the attributes of a categorical variable,
although it is a continuous one. Its partial effect in the model, after controlling for
all covariates and participation, shows how the individual performance is related
with the group inclination to participate, or which strata of customers are more
interested in the campaign - a main concern for business managers for several
reasons, one of which is giving incentives to the groups of customers that would
have “performed” anyway. The P̂ [X] partial effect is expected to differ with the
levels of P̂ [X] itself. This expectation is not reflected in the proposed model (15).
Also, it is reasonable to think that the promotion effect also varies across P̂ [X]
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strata. Therefore, the model (15) can be adjusted to:

(16) g(E[y]) = l(X) + γ̂C · IC · P̂ [X] + α̂C · IC · d

where IC is an indicator variable of stratum C, which groups individuals based on
their P̂ [X] (calipers). Then,

ˆAPE1C = g−1
(
l(X) + γC · IC · P̂ [X] + α̂C · IC · d

)
− g−1

(
l(X) + γC · IC · P̂ [X]

)
and

ÂPE1 =

p∑
C=1

APE1C ·NC|d=1

N1

whereNC|d=1 is the number of participants of group C andN1 is the total number of
participants. P̂ [X] is also as a measurement of the randomness extent in participation
decision process. In a completely random participation, d is X independent:

P (d = 1|X) = P [d] = P̂ [X] = E[d|X] = µ̂p.

The distance |P̂ [Xi]− µ̂p| is proportional to this randomness. Note the use of this
difference in (11). Plugging it in (15) renders:

g(E[y]) = l(X) + γ̂ ·
(
P̂ [X]− µ̂p

)
+ α̂ · d = l′(X) + γ̂ · P̂ [X] + α̂·

where the constant γ̂ · µ̂p is absorbed in the intercept term of l′(X). Therefore we
use P̂ [X] instead of |P̂ [Xi]− µ̂p| in (15); parameter estimates remain the same.

4. Logistic regression performance and propensity scores method

Propensity score methods require the fit of participation decision model not
to be excellent. Some error in prediction is needed so that both participants
and non-participants share the same P̂ [X]. The main information derived by fit
statistics in the decision model, is about the extent the campaign participation is
a function of observables. A random decision for a participation model means the
inability of available X to explain d. Decision itself might well be non-random. If
factors that determine it are (partially) unobservable, then decision to participate
will manifest its share of randomness. As such, the way we perceive the participation
decision is quite a bit data dependent. The less information at individual level (e.g.,
lack of continuous variables), the less deterministic the outcome of the model. Here
follows a brief review on logistic regression performance, which is currently the most
common method in estimating P̂ [X]. A performance index list can be found in [36].
Here follows a part of them with the respective authors:

A. φ1 = 1- log(Lu)/ log(Lc) (McFadden,1974)
B. φ2 = 1- (Lc/Lu)2/N (Cragg and Uhler, 1970)
C. φ3 = 1 - (log(Lu)/ log(Lc))-(2/N)logLc (Estrella, 1998)

D. Maximum Rescaled R2: φ4 =
φ2

1− Lc 2
N

(Nagelkerke , 1991) [37], where Lu

and Lc are the unconstrained and constrained likelihoods, respectively, and
N is the sample size. Correlation coefficient between binary response r and
respective probability prediction r̂, has also been used:
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E. φ5 = ρ2(r, r̂) (Morrison, 1972; Goldberger 1973). The “c” statistic is another
widely used index, which deserves special attention in applying propensity
scores method:

F. c =
nc + 0.5 · (t− nc − nd)

t
, where t is the number of pairs of observations

with different responses, nc of which are concordant and the rest nd discordant.
This index equals the area under the curve of “receiver operating plot”
(ROC), the plot of “Sensitivity” against “1 - Specificity”. Sensitivity(z) is the
ratio between the correctly predicted event responses and the actual number
of events at a predicted probability cut point z, such that observation
“i” is considered an event if P̂ [X]i > z, and a nonevent otherwise. 1 -
Specificity(z) is the ratio between falsely predicted event responses at cut
point z and the actual number of non-events. Equivalently, Sensitivity(z) is
the percentage of registrants correctly predicted at z, whereas 1 - Specificity(z)
is the percentage of non-registrants wrongly predicted as registrants at z.
Both indexes involve a counting process:

Sensitivity =

∑
i∈Registrants I(P̂ [X]i) ≥ z)

nRegistrants

and

1− Specificity =

∑
i∈non-Registrants I(P̂ [X]i) ≥ z)

nnon-Registrants

where I(· ) is an indicator function and n(· ) is the sample size for (· ).
At any given z, Sensitivity and 1 - Specificity take on certain values (between 0

and 1). These values obtained over the whole range from 0 to 1 of the thresholds of
predicted probability z, are coordinates for the points building ROC. For a small
z (say 0.02), the likelihood to predict wrongly a registrant is minute, so sensitivity
value would be 1 or very near 1. Also, the likelihood of assigning a non-registrant
as registrant will be very high, so 1 - Specificity would be 1 or almost 1. With
increasing z, both Sensitivity and 1 - Specificity will tend to decrease. The better a
model predicts the slower is the decreasing rate upon increasing z. An ideal model,
which predicts every single participant with P̂ [X] = 1 and non-participant with
P̂ [X] = 0, would have a perfect square as ROC curve, whose area, and therefore c,
equals 1. C is an index of predictive power of the model. Important in c is the way
it is calculated:

c =
nc + 0.5 · (t− nc − nd)

t
=
nc + 0.5 · ntied

t
=
nc
t

+ 0.5 · ntied
t

,

where ntied is the number of tied pairs with different outcomes. The difference 1−c
equals the percentage of discordant pairs plus half of percentage of tied pairs. This
detail on c composition is important: in (16) the significance of γ̂C depends on
the concordant pairs percentage and that of α̂C on the tied and discordant pairs
percentages. Concordant pairs show that decision to participate systematically
depends on X whereas the rest of pairs, discordant or tied, are needed to estimate
the counterfactuals. If these pairs, summed up as nd + ntied are absent or very few
in number, then α̂C will not be reliable. But also, if nd + ntied grows much (of
course, in expense of nc), then selection is not being determined by observables.
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A comparison of descending ranked of participants “P1” with non-participants
“P0”, as in Fig. 1, shows two regions A and C of sure concordance and a region B
of mixed concordant and discordant observation pairs (denoted BP for participants
and BN for non-participants). Region A is a subset A, {A : min(PA) > max(P ′)},
where PA denotes P̂ [X] in A and P ′ denotes min(max(P1, P0)). Similarly, subset
C is defined as {C : max(PC) > min(P ′′)}, where P ′′ = max(min(P1, P0)).
Depending on how well the logistic stage is predicting, the common support set
B = BP ∪BN , becomes smaller or larger. Regions A and C often are trimmed out
of data set and the analysis is continued on B. In parametric models, A and C are
“counterfactual extrapolation regions” of E[y0|P̂ [X], d = 1] and E[y1|P̂ [X], d = 0],
respectively. The number of observations per unit P̂ [X] differs on B and also
between BP and BN for a given P̂ [X]. The abundance of only one group associated
with scarcity of the other, puts into question the reliability of γ̂ and α̂ in (15).

Figure 1. P [X] ranked grouped by participation status

There are three checking points in logistic regression stage, before continuing
with stage two.

(i) Logistic overall fit through indexes φ1 to φ5 and c to detect either excellent fits
or non-systematic decision mechanism. The first affects the reliability of estimates
and the second makes bias correction redundant.

(ii) Relative size of common support B. If B is small compared to A ∪ C then
estimation of APE1 is based on extrapolation rather than real data.

(iii) Sample sizes in B|P̂ [X].
Very small sample size of participants or of non-participants at a given P̂ [X]

within the common support B affect reliability of ÂPE1|P̂ [X]. There is a relation
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between (i), (ii) and (iii): an excellent prediction in (i) aggravates the problems in
both (ii) and (iii), while “worsening” fit indices in (i) alleviates them.

5. Simulation results

Because of the counterfactual character of observational data, simulation becomes
indispensable in evaluating the goodness of modeling approach to estimate APE1.
The response variable of interest in our data, units sold, is practically an unbounded
from above count random variable, assumed to follow the Poisson distribution and
to be modeled as such [38]. Therefore we simulated a Poisson response variable
with mean systematically determined by four variables: x1, a continuous variable

uniformly distributed with mean 2.5 and variance
25

12
; x2, categorical variable

randomly indexing half of observations; x3, a categorical variable randomly indexing
three equal parts of observations; and the participation binary variable of interest
d. The mean structure for the response variable is:

µy0 = 0.2 · x1 + 0.05 · I1(x2) + 0.3 · I2(x3), if d = 0,

and

µy1 = APE1 · µy0, if d = 1,

where Ij(· ) are indicator functions of level j of categorical variables x2 and x3,
which have two and three levels, respectively. APE1 equals 1.2 for promotion effect
of 20% increase in expected participants response. APE1 equals 1 for null effect.
Note that APE1 is multiplicative and not additive; as such, while it is assigned
to have a constant effect of 20% increase in y1, the increment in y1 taken as the
difference (yi1|d = 1) − (yi1|d = 0) depends on the y1 value. The multiplicative
form of APE assigning is convenient in the generalized linear Poisson model used
for its estimation. The Poisson regression is applied in all models used. The
bias equals the difference between the estimated and simulated APE1. Different
scenarios with respect to participation mechanism are simulated. This mechanism
presumes a latent variable ν as given in (12) and (13). The systematic part of
ν is XΓ = 0.4 · x1 + 0.1 · I1(x2) + (0.05 · I1(x3) + 0.7 · I2(x3)). The random
component υ in ν is a normally distributed variable with mean zero and variance
σ2 ranging from 0.02 to 2. b0 characterizes the campaign incentive, which is
independent of both X and ν. The more appealing a campaign, the larger the
participation in it. Correspondingly, a larger b0 in “d = 1 if υ > −b0” means
higher participation. The participation mechanism has three components: (i) the
observable individual features incorporated in X elements, (ii) the unobservable
individual features represented by υ and (iii) campaign attractiveness, measured
by b0. While X and υ determine the randomness of decision process, b0 determines
the participation rate, given X and υ. Loosely, the same individual, who does
not participate in a campaign, might participate if the offer were more attractive.
Different participation decision scenarios are reflected in the logistic regression fit
statistics, as given in Table 9 (see Appendix). The participation decision goes
from very deterministic to very stochastic with the increase of σ2 in υ from 0.02
to 2. Also, varying b0 creates a wide range of participation rate. The total
number of observations simulated is 50,000. Three models applied to estimate
the participation effect were:
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(i) a generalized linear Poisson model without correcting for selection bias in
which the mean of y, µy, is linked to the linear predictor as log(µy) = xB̂ + Θ̂ · d ,
where B̂ contains the intercept b̂0;

(ii) a propensity scores model, in which a logistic regression estimates the propensity
scores P̂ [X] = P [d = 1|X] and then in a second stage, µy is modeled as

log(µy) = b̂0 + b̂1 · P̂ [X] + b̂2 ·
(
P̂ [X]− µ

P̂ [X]

)
+ α̂ · d.

(iii) the model that combines (i) and (ii) by modeling µy as

log(µy) = XB̂ + γ̂1 · P̂ [X] + α̂ · d.

Henceforth these models will be named (i), (ii) and (iii) as ordered above. We
believe that (i) and (ii) are the most likely choices the analysts would made if
they were to analyze the data straightforwardly (without addressing the possible
self-selection problem) or following the suggested model (11), respectively. The
model outcome for the estimates of the coefficients of d is presented in Fig.2,
where 12 different scenarios with respect to participation mechanism randomness
are compared. The participation outcome gets more and more random (controlled
by unobserved factors) from the left to the right of the graph. This is realized
by increasing the variance of the random component υ in the latent participation
variable ν. Note that υ is unconditionally independent ofX or y, and its expectation
remains 0. With increasing variance we realize a corresponding increased weight of
unobservables in ν, i.e., participation. Within a given scenario different participation
thresholds are tried, by applying different b0, thus increasing participation rates
within a given scenarios from the left to the right. In all, on graph 2 we move from
a very systematic to a very stochastic participation mechanism, and from a low to
a high participation rate, i.e., from an unattractive to a very attractive campaign
incentive range of scenarios. Table 9 (see Appendix), summarizes the variance of υ
and b0 used in each scenario.

Model (iii) produces estimates of APE1 with much smaller bias than that of
the other two. Evidently, model (ii) regressing on propensity scores mitigates
bias compared to model (i) that does not correct for self-selection, but ÂPE1
in (ii) is not robust to the ratio participants to non-participants that changes
across a given scenario. With the participation mechanism getting more and more
random, the bias in APE1 estimates becomes in general smaller and smaller, up
to the rightmost scenario XII, in which apparently there is no need for any bias
correction. The pattern of bias as a function of participation mechanism becomes
clear by comparison between Fig. 2 and 3, the latter presenting the opposite
selection mechanism: the condition for participation in Fig. 2 is the condition
for non-participation in Fig. 3 and vice versa.

Model (iii) treatment effect estimate is more accurate (unbiased) and more robust
to the extent of systemic weight in participation decision. The ÂPE1 bias has
different impacts in promotional evaluation practice. Let us assume that campaign
effect is non-negative. A positive bias in an actual positive effect of campaign is
a mild form of its impact. A negative bias, on the contrary, might reveal a good
campaign as not worthy. If the actual effect of campaign is null, then a positive bias
is more harmful than a negative one, because ÂPE1 ≤ 0 is not only a suspicious
result, but also a reason to stop the campaign or to consider it a failure, whereas
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Figure 2. Estimated campaign participation effect by the three
models. The participation mechanism is the opposite of the one
shown in the previous figure 2.

ÂPE1 ≥ 0 when APE1 is in reality not larger than 0 leads to continuing a fruitless
campaign or drawing wrong conclusions on profitability of a non-profitable action.
To examine the performance of the three models for ineffective campaigns, we
simulated the same participation scenarios as above with APE = 0. The estimates
of APE1 obtained by the three models, given in the Table 10 (see Appendix), show
that only model (iii) does not assign any significant effect to the campaign with
real zero effect across all studied scenarios, as the p-values of the hypothesis test
H0 : ÂPE1 = 0 reveal. Including estimated propensity score in the generalized
linear model estimating APE substantially improved the ability of model for a
much more accurate ÂPE1 compared to the same model without propensity score,
or the same model without covariates.

6. Analysis of two campaigns

6.1. Campaign 1. A campaign launched some time ago offered an incentive to
participants in exchange of some purchase. In order to participate in the campaign,
the individuals should be member of a loyalty club and they should register. Registration
was free of charge. It only showed a preliminary interest of participants. A
registrant was not obliged to purchase. Customers that joined the club attracted
by promotion increased the loyalty club membership size. There were 201,107
registrants out of a total of 1,164,742 club members who did purchase during
the promotional period. 203,931 individuals enrolled and became club members
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Figure 3. Estimated campaign participation effect by the three models

during the registration phase and 9,534 of them participated in the campaign.
The other 960,811 individuals were already club members and 191,573 of them
registrants. Observable explanatory variables are membership class in the beginning
of promotional period (categorized as “Platinum”, “Gold” and “Club” members),
collector of loyalty benefits type (two categories, “Air Miles” or “Point” collectors),
time since enrollment in club (years), time since the last purchase (months), enrollment
tenure (“new” enrollees considered those who enrolled in campaign registration time,
otherwise “old”), demographic data as average income, population age, percentage of
females, businesses and population per square mile in the ZIP Code area of member
home address, total purchases per individual during the year before promotion,
point balance after redemptions, total points and total miles earned per individuals
and the brand(s) of purchased article. Data contains mostly categorical and demographic
variables − both of which do not provide information at individual level. The only
variable with important individual information is the total purchases per individual
during the year before promotion.

Participation is analyzed by logistic regression (see Table 11 in Appendix).
It is noteworthy the negative effect of time variables like “time since enrollment”

and “time since the last purchase” on participation rate, which is backed up by
the dramatic effect of enrollment tenure, altogether showing that the vital core
of participation is the new membership. The unconstrained log-likelihood of the
model is −479,849, whereas the constrained log-likelihood is −413,577. This small
difference is to be expected, as covariates are mostly not individual specific. These
likelihood values produce anR2 as low as 0.129 and a maximum rescaledR2 of 0.204.
The c statistic is 0.758. Out of 147,215,549,944 pairs with different participation
status, 75.3% were concordant, 23.8% discordant and 0.8% tied. Clearly, an excellent
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fit of participation model is not a problem here and participation is perceived
at a considerable extent as non-systemic. Parameter estimates of model (i) and
(iii) are not much different (Table 12, see Appendix) and the main change by
incorporating propensity scores in model (iii) consists in the different partial effect
of the purchased brands. ÂPE1 is virtually the same in both models. Application of
model (ii) of regressing on propensity scores produces a stronger effect of participation,
as shown in Table 2.

Table 2. Parameter estimates of model (ii), example 1.

Parameter Estimate StdErr P-value
Intercept 0.4994 0.0011 <.0001

Propensity score 2.9335 0.0035 <.0001

Participation × (Propensity score - Mean) -0.4027 0.0053 <.0001

Participation 0.28 0.0015 <.0001

The estimated overall campaign effect on participants, based on model (iii) is
100 · [exp(0.2272)− 1] = 25.5%. However, it not realistic to expect the same APE1
in all participant groups. Interacting the categorical variable(s) of interest with the
participation variable gives the APE1 estimates across the levels of these categorical
variable(s). It is of a primary interest to estimate APE1 across the different strata
of participation as this directly links the response to campaign with the returned
value on its investment. The response to campaign (registration) does not imply a
real participation, but an intention to do so. Propensity score is a scaled measure
of this intention. Other overlapping in time campaigns launched by competitors
give to customers, who can be registrants in several campaigns at the same time,
the luxury of choosing the “right offer” for them.

The histogram of propensity score estimates, presented in Fig. 4, suggests
roughly four groups with respect to the registration rates. Interacting a categorical
variable indicating these four groups with the participation variable evaluates APE1
in each group. In doing so one must be aware of collinearity problems that can
arise, because the new categorical variable can bear similar information with other
variables already in the model, like say, membership class.

The results of interaction presented in Table 3, indicate that the campaign effect
lift in the group “j” (CELj), calculated as 100% · [exp(PEj) − 1], where PEj is
the parameter estimate for group j, differs across groups. Note that the number
of expected purchases gained per customer (HNG) does not necessarily follow the

pattern of estimated effect. It is calculated as HNGj = HNj ·
( 1

1 + CELj

)
; it

is depends on HNj, the observed mean individual response of participants in the
group j.

6.2. Campaign 2. Another similar promotional campaign launched also in the
past covered, in contrast with the example above, only one brand to be purchased.
Out of 1,278,278 active loyalty club members during the promotional period, 240,858
participated in campaign. The parameter estimates of logistic stage are presented
in the Table 4.
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Figure 4. Propensity Score distribution in Example 1.

Table 3. APE1 estimates across individual response rate groups.

Group Parameter
estimate

StdErr P-value Estimated
effect (%)

1 0.2339 0.0065 <.0001 26.40

2 0.2653 0.0026 <.0001 30.40

3 0.2968 0.002 <.0001 34.60

4 0.1259 0.0019 <.0001 13.40

The main difference in participation process in this example is that new enrollees
have participated less than the older ones. There were 249,870,906,360 pairs with
different outcomes, 73.4% of which concordant, 25.6% discordant and 1% tied.
Statistic c is 0.74. The outcome for models (i) and (iii) in Table 5 shows a slight
decrease of ÂPE1 in (iii).

Including propensity scores in model (iii) is associated with two relevant changes
in the partial effect of covariates: Total purchases before the promotional period
changes from negative in model (i) into positive in model (iii) and the effect of new
enrollees becomes much more important in model (iii). Both these changes are in
concordance with previous experiences and also with the common sense. Model (ii),
whose parameter estimates are presented in Table 7, did not produce reasonable
estimates for the campaign effect. Its ÂPE1 was negative. The estimated overall
campaign effect on participants is 100 · [exp(0.1184)− 1] = 12.6%.
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Table 4. Parameter estimates of logistic regression for campaign
participation, example 2. (The “baselines” of categorical variables,
“CLUB” for membership class, “Old” for enrollment age and
“Points” for collector type, whose the estimates are zero, are
omitted)

Parameter Class level Estimate StdErr P-Value
Intercept -1.0641 0.00793 <.0001

Membership

GOLD 0.3154 0.00544 <.0001
OTHER 0.4402 0.0121 <.0001

PLATINUM 0.8919 0.0101 <.0001
SIGNATURE -0.4337 0.00533 <.0001

Enrollment tenure New -0.2296 0.00312 <.0001
Total purchases pre-campaign 0.00875 0.00047 <.0001

Collector type Miles -0.00595 0.00325 0.0668

ZIP Income 0.0000013 0.00000011 <.0001
Population per square mile -0.00000052 0.00000026 0.0429

Days sine last purchase -0.00107 0.000019 <.0001

Day since enrollment 0.000039 0.00000121 <.0001

Table 5. Parameter estimates of models (i) and (iii), example 2.

Parameter Class Model i Model ii
Estimate StdErr P-Value Estimate StdErr P-Value

Intercept 0.5686 0.0035 <.0001 0.0923 0.0119 <.0001

Membership Class

GOLD 1.2619 0.003 <.0001 0.6634 0.0146 <.0001
OTHER 1.1398 0.0069 <.0001 0.4555 0.0178 <.0001

PLATINUM 2.0326 0.0039 <.0001 1.009 0.0247 <.0001
SIGNATURE 0.5871 0.0025 <.0001 0.405 0.005 <.0001

Enrollee tenure New 0.0984 0.0025 <.0001 0.3773 0.0071 <.0001
Total purchases prior to promotion -0.039 0.0028 <.0001 0.0294 0.0032 <.0001

Total purchases prior to
promotion by
Membership Class

GOLD 0.0632 0.0028 <.0001 -0.0128 0.0033 <.0001
OTHER 0.0805 0.0029 <.0001 0.0043 0.0033 0.198

PLATINUM 0.0536 0.0028 <.0001 -0.0209 0.0033 <.0001
SIGNATURE 0.0549 0.0028 <.0001 -0.012 0.0031 0.0001

Collector type Miles -0.0692 0.0022 <.0001 -0.0625 0.0022 <.0001

ZIP Income 0 0 <.0001 0 0 <.0001
Population per square mile 0 0 <.0001 0 0 <.0001

Days sine last purchase 0 0 <.0001 0.0003 0 <.0001

Day since enrollment -0.0001 0 <.0001 -0.0001 0 <.0001

Propensity scores 2.9 0.0691 <.0001

Participation 0.1255 0.0018 <.0001 0.1184 0.0018 <.0001

Following the same procedure with propensity score histogram as in the first
example, five groups of individuals can be visually detected, as presented in Fig. 5
(see Appendix).
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The interaction of the five groups with the participation variable produces some
counterintuitive negative estimates of participation in campaign, as given in Table
13 (see Appendix). It is very unlikely the campaign effect to be significantly
negative.

The partial effect of propensity scores increases substantially towards lower
group levels, with low participation rate. Something inherently different should
characterize lower and higher groups of participation rates given in Fig. 5. Intuitively,
by bringing together the results of logistic regression and second Poisson regression
stage, one can notice that while the new enrollees do have lower registration rates,
in the same time they have a larger response in terms of purchases. The enrollment
tenure parameter estimate is -0.02296 in logistic and 0.3773 in the Poisson regression.
Therefore it is worth examining the composition of propensity score histogram
across enrollee loyalty programmembership tenure, as shown in Fig. 6 (see Appendix).

Fig. 6 is the result of two logistic regressions on two separate data sets: one
with the new enrollees and the other with the older ones. Evidently, the “newer”
enrollees fill up the lower range of propensity cores (group 1 in Fig. 5 is comprised
mostly of them). Additionally, the conspicuous difference in the group sizes (“newer”
enrollees are a much bigger group) justifies creating of two data sets on enrollee
tenure and of two independent models on them. “Newer” enrollees do not have
heterogeneous groups on participation rates, whereas the more tenured enrollees
are distributed in three groups, as shown in Fig. 6. Application of the two-stage
model as applied in the examples above is straightforward. A logistic regression
produces the propensity scores needed in stage two. In the newer enrollees model,
the important variable of purchasess in the year prior to campaign is eliminated,
as it is zero. This brings about the decrease in the logistic fitness indexes. For
example the c statistic is 0.606 in the model with new enrollees and 0.674 in the
model with more tenured enrollees. The results are summarized in Table 6.

New enrollees show a significantly higher sensitivity to the campaign appeal, and
among the old enrollees, the group with low participation rate has the least gain
from the campaign at individual level. In both examples shown above, propensity
scores changed the partial effects of some of the other covariates. We are inclined
to believe that that change is in the right direction. We do consider propensity
score as an omitted variable in the model (i). Adding propensity score in the
model extensively increased the insight to the very important relationship between
participation rate and immediate gains from promotional campaign.

Table 6. APE1 estimates across different enrollment age groups.

Enrollment
age

Participation
rate group

Estimate StdErr P-Value Estimated
effect (%)

“Newer” 0.295 0.0047 <.0001 34.30

“Older”
1 0.0412 0.0048 <.0001 4.20

2 0.2102 0.0033 <.0001 23.40

3 0.2007 0.0049 <.0001 22.20
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Table 7. Parameter estimates of model (ii), example 2.

Parameter Estimate StdErr P-value
Intercept 0.3742 0.0019 <.0001

Propensity score 3.6946 0.0068 <.0001

Participation× (Propensity score - Mean) 0.8406 0.0123 <.0001

Participation -0.0299 0.003 <.0001

7. Conclusions

The inclusion of estimated propensity score as an independent variable in models
estimating promotional campaign effect helps in mitigating or eliminating estimation
bias that stems from violation of randomness principle by self-selectivity in campaign
participation. It results to an effective parametric method of estimation that
outperforms the non-and-semi-parametric competitors. Also, the superiority to
the parametric models regressing either on covariates or on propensity score alone
is evident. The model gains considerably in interpretative power and related
conclusions, as well. The reason for these improvement in model performance is
that propensity score is generally an omitted variable in regression. While this is
not a problem in experimental data, where propensity score is a constant by design
and is absorbed in the intercept terms, in the observational data this does not hold
true any more and, if not accounted for, brings about bias in parameter estimates.
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Appendix - (SAS code, tables, figures).

The participation decision process is thought of as the realization of a latent
continuous variable, which “switches on” whenever it exceeds a given threshold. This
is the basic idea in implementing generic code of a systemic participating decision,
like the SAS code producing the propensity scores in Table 1, which follows:

data s;
do i=1 to 2000;
if i < 350 then a=“A”;
if i>=350 and i<1150 then a=“B”;
if i>=1150 then a=“C”;
if i<700 then b=“A”;
if i>=700 and i< 1425 then b=“B”;
if i>=1425 then b=“C”;
if i<570 then c = “A”;
if i>=570 and i<1330 then c = “B”;
if i>=1330 then c = “C”;
if a=“A” then IA_A=1;else IA_A=0;
if a=“B” then IA_B=1; else IA_B=0;
if a=“C” then IA_C=1; else IA_C=0;
if b=“A” then IB_A=1; else IB_A=0;
if b=“B” then IB_B=1; else IB_B=0;
if b=“C” then IB_C=1; else IB_C=0;
if c=“A” then IC_A=1; else IC_A=0;
if c=“B” then IC_B=1; else IC_B=0;
if c=“C” then IC_C=1; else IC_C=0;
V=0.2 - 0.4 · IA_A - 0.3 · IA_B - 0.7 · IA_C +
0.9 · IB_A + 0.1 · IB_B + 0.5 · IB_C -
1.1 · IC_A + 0.1 · IC_B - 0.5 · IC_C +
1.5 · rannor(-1);

if V < 1.3 then y = 0; else y = 1;
output; end;
run;

proc logistic data=s descending;
class a b c;
model y = a b c;
output out=out_data p=pred_prob;
run;

data out_data;
set out_data;
description =a||b||c;
run;

proc means data=out_data n;
var y;
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class pred_prob description;
output out=final;
run;

The binary outcomes y are realizations of a latent variable V, determined by a
threshold (in this case 1.3). Also note that for X made of only discrete covariates,
the expected probabilities of y = 1 (propensity scores) equal simply the means of y
across all classes formed by discrete covariates, which are consistent estimators for
propensity scores. The SAS code (in place of proc logistic) is:

proc means data=out_data mean;
var y;
class description;
output out=final1;
run;

This is the non-parametric version of getting the propensity score. The parametric
version though renders much more information on selection mechanism, and most
importantly, it specifies the partial effect of each covariate.
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Table 8: Semi-parametric estimates of APE1:
Wooldridge (2002), Hirano, Imbens and Ridder (2002) HIR, Ridgeway, McCaffrey,
Morral and Lim (2002) RMML, Hirano and Imbens (2002) HI, Caliper matching −
CM, Actual APE1 − APE1.

(Scenario) b0 Wooldridge HIR RMML HI CM APE1

0.02 (I)

1.8 0.80 0.79 0.52 0.79 0.66 0.25
1.5 0.56 0.55 0.33 0.77 -0.11 0.23
1.3 0.37 0.37 0.30 0.76 0.30 0.22
1.1 0.31 0.31 0.58 0.75 0.63 0.20
0.9 0.21 0.21 0.50 0.75 0.61 0.19
0.7 0.12 0.12 0.45 0.73 0.80 0.18
0.5 0.12 0.12 0.71 0.77 0.46 0.18

0.05 (II)

1.8 1.18 1.17 0.36 0.73 0.26 0.25
1.5 1.01 1.01 0.27 0.70 0.17 0.23
1.3 0.93 0.93 0.40 0.72 0.48 0.22
1.1 0.87 0.86 0.48 0.70 0.30 0.20
0.9 0.69 0.68 0.58 0.70 0.68 0.19
0.7 0.51 0.51 0.57 0.70 0.43 0.18
0.5 0.36 0.35 0.63 0.73 0.51 0.18

0.10 (III)

1.8 0.91 0.89 0.34 0.63 0.27 0.25
1.5 1.05 1.03 0.46 0.62 0.56 0.23
1.3 1.07 1.07 0.51 0.63 0.42 0.22
1.1 1.07 1.07 0.52 0.61 0.50 0.20
0.9 1.03 1.02 0.50 0.61 0.56 0.19
0.7 0.99 0.99 0.56 0.63 0.51 0.18
0.5 0.83 0.83 0.56 0.63 0.44 0.18

0.20 (IV)

1.8 0.68 0.63 0.40 0.54 0.39 0.24
1.5 0.73 0.70 0.39 0.48 0.35 0.22
1.3 0.81 0.80 0.39 0.49 0.42 0.21
1.1 0.83 0.82 0.39 0.46 0.36 0.20
0.9 0.90 0.89 0.50 0.51 0.48 0.19
0.7 0.92 0.91 0.53 0.51 0.53 0.18
0.5 0.92 0.92 0.55 0.54 0.49 0.18

0.35 (V)

1.8 0.23 0.16 0.23 0.35 0.23 0.24
1.5 0.45 0.41 0.33 0.34 0.32 0.22
1.3 0.51 0.48 0.33 0.32 0.26 0.21
1.1 0.59 0.57 0.37 0.33 0.37 0.20
0.9 0.64 0.63 0.36 0.32 0.28 0.19
0.7 0.71 0.70 0.43 0.38 0.40 0.18
0.5 0.77 0.77 0.49 0.44 0.38 0.18

0.40 (VI)

1.8 0.19 0.11 0.20 0.32 0.21 0.23
1.5 0.39 0.34 0.31 0.30 0.29 0.22
1.3 0.43 0.39 0.30 0.27 0.25 0.21
1.1 0.51 0.49 0.32 0.27 0.27 0.20
0.9 0.56 0.54 0.34 0.29 0.31 0.19
0.7 0.62 0.61 0.37 0.33 0.33 0.18
0.5 0.72 0.71 0.46 0.42 0.36 0.18
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Continuation of Table 8
(Scenario) b0 Wooldridge HIR RMML HI CM APE1

0.45 (VII)

1.8 0.19 0.11 0.19 0.28 0.20 0.23
1.5 0.25 0.19 0.24 0.25 0.24 0.22
1.3 0.37 0.33 0.29 0.24 0.28 0.21
1.1 0.46 0.43 0.33 0.27 0.26 0.20
0.9 0.49 0.47 0.31 0.26 0.31 0.19
0.7 0.56 0.55 0.34 0.30 0.29 0.18
0.5 0.64 0.63 0.40 0.36 0.38 0.18

0.50 (VIII)

1.8 0.19 0.11 0.21 0.26 0.21 0.23
1.5 0.19 0.13 0.20 0.21 0.22 0.21
1.3 0.32 0.28 0.26 0.21 0.25 0.20
1.1 0.39 0.36 0.29 0.23 0.25 0.20
0.9 0.46 0.43 0.31 0.26 0.28 0.19
0.7 0.50 0.48 0.31 0.27 0.27 0.18
0.5 0.58 0.57 0.36 0.32 0.30 0.18

0.60 (IX)

1.8 0.16 0.08 0.19 0.22 0.20 0.22
1.5 0.19 0.13 0.19 0.17 0.18 0.21
1.3 0.23 0.18 0.22 0.19 0.23 0.20
1.1 0.30 0.26 0.25 0.19 0.23 0.19
0.9 0.33 0.31 0.25 0.21 0.21 0.19
0.7 0.41 0.39 0.30 0.25 0.27 0.18
0.5 0.45 0.44 0.31 0.27 0.27 0.18

0.75 (X)

1.8 0.17 0.08 0.19 0.18 0.20 0.21
1.5 0.19 0.12 0.20 0.17 0.20 0.20
1.3 0.19 0.14 0.18 0.16 0.18 0.20
1.1 0.21 0.16 0.19 0.16 0.18 0.19
0.9 0.25 0.21 0.21 0.18 0.21 0.19
0.7 0.30 0.28 0.25 0.21 0.23 0.18
0.5 0.30 0.28 0.23 0.21 0.22 0.18

1.00 (XI)

1.8 0.18 0.08 0.19 0.17 0.19 0.20
1.5 0.17 0.10 0.18 0.15 0.19 0.19
1.3 0.18 0.12 0.18 0.15 0.18 0.19
1.1 0.19 0.14 0.19 0.16 0.19 0.19
0.9 0.19 0.15 0.18 0.16 0.18 0.18
0.7 0.21 0.17 0.19 0.17 0.18 0.18
0.5 0.22 0.19 0.20 0.17 0.19 0.17

2.00 (XII)

1.8 0.17 0.08 0.17 0.15 0.18 0.18
1.5 0.18 0.09 0.18 0.16 0.18 0.18
1.3 0.17 0.09 0.17 0.15 0.17 0.18
1.1 0.17 0.10 0.17 0.15 0.17 0.17
0.9 0.16 0.10 0.16 0.15 0.17 0.17
0.7 0.16 0.11 0.16 0.15 0.16 0.17
0.5 0.16 0.12 0.16 0.15 0.16 0.17

End of Table8
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Table 9: Different participation decision scenarios and their respective fit statistics.

σ2 of υ
Scenario

b0 %
Par-
tici-
pants

LogLc LogLu c φ2 φ4 φ5 φ1 φ2 φ3

0.02 (I)

1.8 75 -28101 -934 0.9994 0.6627 0.9817 0.9845 0.9668 0.6627 0.9782
1.5 60 -33606 -924 0.9996 0.7295 0.9867 0.9879 0.9725 0.7295 0.992
1.3 50 -34657 -896 0.9996 0.7409 0.9878 0.9889 0.9741 0.7409 0.9937
1.1 40 -33702 -952 0.9995 0.7302 0.9864 0.9876 0.9718 0.7302 0.9918
0.9 30 -30558 -914 0.9995 0.6945 0.9845 0.9862 0.9701 0.6945 0.9863
0.7 21 -25594 -626 0.9996 0.6317 0.9858 0.9882 0.9756 0.6317 0.9776
0.5 14 -20449 -609 0.9996 0.5478 0.9805 0.9845 0.9702 0.5478 0.9436

0.05 (II)

1.8 75 -28104 -2292 0.9966 0.6439 0.9538 0.9614 0.9184 0.6439 0.9403
1.5 60 -33608 -2300 0.9973 0.7142 0.966 0.9695 0.9316 0.7142 0.9728
1.3 50 -34657 -2253 0.9975 0.7264 0.9686 0.9713 0.935 0.7264 0.9774
1.1 40 -33697 -2403 0.9971 0.714 0.9646 0.9682 0.9287 0.714 0.9715
0.9 30 -30568 -2298 0.9969 0.6772 0.9598 0.9651 0.9248 0.6772 0.9577
0.7 21 -25662 -1646 0.998 0.6174 0.962 0.9689 0.9359 0.6174 0.9404
0.5 14 -20481 -1467 0.9979 0.5326 0.9524 0.9619 0.9284 0.5326 0.8847

0.1 (III)

1.8 75 -28116 -4488 0.9869 0.6114 0.9054 0.922 0.8404 0.6114 0.873
1.5 60 -33634 -4558 0.9895 0.6875 0.9296 0.939 0.8645 0.6875 0.9321
1.3 50 -34657 -4591 0.9897 0.6996 0.9328 0.9411 0.8675 0.6996 0.9393
1.1 40 -33676 -4583 0.9894 0.6877 0.9293 0.9384 0.8639 0.6877 0.9319
0.9 30 -30586 -4487 0.9883 0.6479 0.9181 0.9304 0.8533 0.6479 0.9045
0.7 21 -25805 -3458 0.9912 0.5909 0.9179 0.9342 0.866 0.5909 0.8744
0.5 14 -20474 -2998 0.9911 0.5029 0.8995 0.9206 0.8536 0.5029 0.7927

0.2 (IV)

1.8 75 -28239 -8227 0.9554 0.5509 0.8139 0.851 0.7087 0.5509 0.7517
1.5 60 -33642 -9105 0.9579 0.6252 0.8453 0.8739 0.7294 0.6252 0.8277
1.3 50 -34657 -9079 0.9598 0.6405 0.854 0.8791 0.738 0.6405 0.8439
1.1 40 -33692 -8983 0.9589 0.6278 0.8482 0.8751 0.7334 0.6278 0.8316
0.9 31 -30769 -8448 0.9584 0.5905 0.8341 0.8646 0.7254 0.5905 0.7963
0.7 22 -26257 -7265 0.9619 0.5322 0.8186 0.8581 0.7233 0.5322 0.7406
0.5 15 -20686 -6134 0.9627 0.4413 0.784 0.832 0.7035 0.4413 0.6343

0.35

1.8 74 -28909 -13444 0.8816 0.4613 0.6731 0.7478 0.5349 0.4613 0.5874
(V) 1.5 60 -33698 -14944 0.8849 0.5277 0.7129 0.7786 0.5565 0.5277 0.6658

1.3 50 -34657 -15262 0.8849 0.5397 0.7196 0.7833 0.5596 0.5397 0.6792
1.1 41 -33786 -14970 0.8849 0.5289 0.7136 0.7791 0.5569 0.5289 0.6671
0.9 31 -31096 -13942 0.8871 0.4965 0.6976 0.7675 0.5517 0.4965 0.6313
0.7 23 -27051 -12411 0.8901 0.4432 0.6704 0.7487 0.5412 0.4432 0.5696
0.5 16 -21824 -10495 0.8921 0.3644 0.6258 0.7088 0.5191 0.3644 0.4722

0.4 (VI)

1.8 73 -29183 -14943 0.8541 0.4343 0.6304 0.7176 0.488 0.4343 0.5422
1.5 60 -33745 -16618 0.8568 0.496 0.6696 0.7484 0.5076 0.496 0.6156
1.3 50 -34657 -17097 0.8546 0.5046 0.6728 0.7512 0.5067 0.5046 0.6245
1.1 41 -33822 -16762 0.855 0.4946 0.667 0.7469 0.5044 0.4946 0.6131
0.9 32 -31296 -15683 0.8571 0.4645 0.6505 0.7352 0.4989 0.4645 0.5789
0.7 24 -27337 -13892 0.8627 0.416 0.6256 0.7156 0.4918 0.416 0.523
0.5 17 -22413 -11850 0.8646 0.3446 0.5821 0.675 0.4713 0.3446 0.4352

0.45 (VII)

1.8 72 -29451 -16371 0.825 0.4074 0.5886 0.688 0.4441 0.4074 0.4993
1.5 59 -33762 -18268 0.8258 0.4619 0.6235 0.7171 0.4589 0.4619 0.5637
1.3 50 -34657 -18752 0.8239 0.4707 0.6276 0.7205 0.4589 0.4707 0.5732
1.1 41 -33861 -18383 0.8245 0.4616 0.6222 0.7166 0.4571 0.4616 0.5628
0.9 32 -31454 -17210 0.8275 0.4343 0.6068 0.705 0.4528 0.4343 0.5317
0.7 24 -27638 -15380 0.832 0.3876 0.5794 0.682 0.4435 0.3876 0.4769
0.5 17 -22947 -13165 0.835 0.3238 0.5391 0.6417 0.4263 0.3238 0.3995

0.5 (VIII)

1.8 72 -29725 -17703 0.796 0.3818 0.5489 0.66 0.4044 0.3818 0.46
1.5 59 -33809 -19776 0.7946 0.4295 0.5794 0.6872 0.415 0.4295 0.5158
1.3 50 -34657 -20293 0.792 0.437 0.5827 0.6901 0.4145 0.437 0.5238
1.1 41 -33901 -19908 0.7928 0.4286 0.5774 0.6864 0.4128 0.4286 0.5141
0.9 33 -31646 -18662 0.797 0.4051 0.5642 0.6754 0.4103 0.4051 0.4875
0.7 25 -28013 -16760 0.8014 0.3625 0.5379 0.6517 0.4017 0.3625 0.4376
0.5 18 -23498 -14364 0.8068 0.3061 0.5023 0.6132 0.3887 0.3061 0.3704

0.6 (IX)

1.8 71 -30251 -19963 0.7423 0.3374 0.4807 0.6119 0.3401 0.3374 0.3953
1.5 59 -33928 -22328 0.7341 0.3712 0.4999 0.6322 0.3419 0.3712 0.4332
1.3 50 -34657 -22850 0.7315 0.3764 0.5019 0.6352 0.3407 0.3764 0.4387
1.1 42 -33975 -22428 0.7326 0.3699 0.4978 0.6312 0.3399 0.3699 0.4313
0.9 34 -31968 -21283 0.7335 0.3478 0.482 0.6174 0.3342 0.3478 0.4056
0.7 26 -28701 -19199 0.741 0.3162 0.4631 0.5978 0.3311 0.3162 0.3697
0.5 19 -24620 -16672 0.7479 0.2723 0.4347 0.5644 0.3228 0.2723 0.3188

0.75

(X) 1.8 69 -31003 -23071 0.6566 0.2719 0.3826 0.5409 0.2558 0.2719 0.3068
1.5 58 -34053 -25276 0.6502 0.2961 0.398 0.5588 0.2578 0.2961 0.3337
1.3 50 -34657 -25738 0.648 0.3001 0.4001 0.5613 0.2573 0.3001 0.338
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Continuation of Table 9
σ2 of υ
Scenario

b0 %
Par-
tici-
pants

LogLc LogLu c φ2 φ4 φ5 φ1 φ2 φ3

1.1 43 -34098 -25437 0.6463 0.2928 0.3934 0.5558 0.254 0.2928 0.3295
0.9 35 -32391 -24240 0.649 0.2782 0.3831 0.5447 0.2516 0.2782 0.3131
0.7 28 -29734 -22378 0.6526 0.2549 0.3665 0.5249 0.2474 0.2549 0.2868
0.5 22 -26281 -19813 0.6631 0.228 0.3504 0.5027 0.2461 0.228 0.2569

1 (XI)

1.8 66 -32046 -26699 0.5394 0.1926 0.2665 0.448 0.1669 0.1926 0.2086
1.5 57 -34226 -28489 0.5346 0.2051 0.275 0.4602 0.1676 0.2051 0.2221
1.3 50 -34657 -28881 0.5324 0.2063 0.2751 0.4613 0.1667 0.2063 0.2233
1.1 44 -34229 -28548 0.5328 0.2033 0.2726 0.4583 0.166 0.2033 0.22
0.9 37 -33007 -27566 0.5347 0.1956 0.2669 0.4504 0.1649 0.1956 0.2117
0.7 31 -31066 -26027 0.5362 0.1825 0.2566 0.4363 0.1622 0.1825 0.1974
0.5 26 -28524 -23878 0.5452 0.1696 0.2492 0.4229 0.1629 0.1696 0.1836

2 (XII)

1.8 59 -33797 -32151 0.2969 0.0637 0.086 0.2538 0.0487 0.0637 0.0653
1.5 54 -34522 -32853 0.2943 0.0645 0.0862 0.2553 0.0483 0.0645 0.0661
1.3 50 -34657 -32990 0.2938 0.0645 0.086 0.2552 0.0481 0.0645 0.0661
1.1 46 -34512 -32838 0.2954 0.0647 0.0865 0.2557 0.0485 0.0647 0.0663
0.9 43 -34088 -32428 0.2967 0.0642 0.0863 0.2547 0.0487 0.0642 0.0658
0.7 39 -33407 -31787 0.2975 0.0627 0.0851 0.2517 0.0485 0.0627 0.0643
0.5 35 -32459 -30825 0.3044 0.0633 0.087 0.2528 0.0503 0.0633 0.0649

End of Table9

Table 10: Estimates of APE1 and the p-values of the hypothesis test that APE1 effect is not
significant in a simulation with the real APE1 value of 0.

Scenario b0 Model i Model ii Model iii
ˆAPE1 P-Value ˆAPE1 P-Value ˆAPE1 P-Value

scenario I

1.8 -0.2174 <.0001 0.1775 0.0072 0.018 0.7577
1.5 -0.071 0.0001 0.0999 0.1083 0.0117 0.8563
1.3 0.0801 <.0001 0.0449 0.5027 0.0246 0.7283
1.1 0.1837 <.0001 -0.0562 0.4294 -0.0705 0.3321
0.9 0.3082 <.0001 0.0839 0.2954 0.0611 0.4453
0.7 0.3919 <.0001 0.1363 0.225 0.0098 0.9248
0.5 0.4841 <.0001 0.4154 0.0039 0.1438 0.2238

scenario II

1.8 -0.2153 <.0001 0.1758 <.0001 -0.0164 0.6608
1.5 -0.0778 <.0001 0.0713 0.0757 -0.0206 0.6158
1.3 0.0702 0.0002 0.0262 0.5286 -0.0085 0.8472
1.1 0.1794 <.0001 -0.0376 0.3823 -0.0468 0.3079
0.9 0.3093 <.0001 0.0882 0.084 0.0645 0.2012
0.7 0.3825 <.0001 0.1082 0.1253 -0.0485 0.4557
0.5 0.4778 <.0001 0.3224 0.0003 0.0505 0.5067

scenario III

1.8 -0.1976 <.0001 0.1995 <.0001 0.0045 0.8642
1.5 -0.0707 <.0001 0.0788 0.0064 -0.0046 0.8752
1.3 0.06 0.0011 0.0164 0.5781 -0.0141 0.6514
1.1 0.167 <.0001 -0.036 0.2524 -0.0463 0.1615
0.9 0.297 <.0001 0.0712 0.0492 0.0428 0.2337
0.7 0.3744 <.0001 0.1318 0.0061 0.0036 0.9366
0.5 0.4412 <.0001 0.1629 0.0072 -0.0734 0.1664

scenario IV

1.8 -0.1357 <.0001 0.2267 <.0001 0.0435 0.0255
1.5 -0.0362 0.0313 0.1047 <.0001 0.0299 0.1484
1.3 0.0512 0.0033 0.0341 0.1062 0.0021 0.9244
1.1 0.1536 <.0001 0.0055 0.8079 -0.0007 0.9773
0.9 0.2532 <.0001 0.0452 0.0798 0.021 0.4153
0.7 0.3391 <.0001 0.1434 <.0001 0.0329 0.2805
0.5 0.3944 <.0001 0.1705 <.0001 -0.0189 0.6081

scenario V

1.8 -0.0976 <.0001 0.1904 <.0001 0.0067 0.6595
1.5 -0.0272 0.069 0.0881 <.0001 0.0091 0.5701
1.3 0.0369 0.0176 0.0426 0.0091 0.0082 0.6253
1.1 0.0984 <.0001 0.007 0.685 -0.0021 0.9064
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Continuation of Table 10
Scenario b0 Model i Model ii Model iii

ˆAPE1 P-Value ˆAPE1 P-Value ˆAPE1 P-Value
0.9 0.1728 <.0001 0.0187 0.3381 0.0062 0.7539
0.7 0.2505 <.0001 0.0872 0.0002 0.0309 0.1703
0.5 0.289 <.0001 0.1384 <.0001 0.0056 0.8342

scenario VI

1.8 -0.0832 <.0001 0.1861 <.0001 0.0052 0.7212
1.5 -0.018 0.214 0.0896 <.0001 0.0124 0.4121
1.3 0.0296 0.048 0.0409 0.008 0.0053 0.7345
1.1 0.0846 <.0001 0.0108 0.5066 0.0002 0.9885
0.9 0.1466 <.0001 0.0132 0.4654 0.0049 0.7875
0.7 0.2145 <.0001 0.0616 0.0046 0.0196 0.3513
0.5 0.2662 <.0001 0.1278 <.0001 0.0238 0.3361

scenario VII

1.8 -0.0705 <.0001 0.1807 <.0001 0.0041 0.7685
1.5 -0.0153 0.2707 0.089 <.0001 0.0101 0.4818
1.3 0.0277 0.0553 0.0413 0.0052 0.0074 0.618
1.1 0.0788 <.0001 0.0185 0.2319 0.0086 0.5885
0.9 0.124 <.0001 0.009 0.5994 0.0027 0.877
0.7 0.1796 <.0001 0.0413 0.0404 0.0102 0.6055
0.5 0.2442 <.0001 0.1138 <.0001 0.0368 0.11

scenario VIII

1.8 -0.0594 <.0001 0.172 <.0001 0.0035 0.7913
1.5 -0.0175 0.1947 0.0822 <.0001 0.0036 0.796
1.3 0.0261 0.0618 0.0423 0.0029 0.0093 0.5166
1.1 0.0565 0.0001 0.0078 0.5958 -0.0029 0.8476
0.9 0.1038 <.0001 0.0064 0.6914 0.0011 0.9464
0.7 0.1507 <.0001 0.0278 0.1398 0.0061 0.7422
0.5 0.2021 <.0001 0.0817 0.0004 0.0207 0.3374

scenario IX

1.8 -0.0499 <.0001 0.1522 <.0001 -0.0038 0.7633
1.5 -0.0143 0.2647 0.0744 <.0001 -0.0003 0.9825
1.3 0.0263 0.0459 0.0485 0.0003 0.0141 0.289
1.1 0.0427 0.002 0.0124 0.3689 0.0009 0.9464
0.9 0.0673 <.0001 -0.0007 0.9627 -0.0049 0.7442
0.7 0.1199 <.0001 0.0249 0.14 0.016 0.3409
0.5 0.1481 <.0001 0.0476 0.0174 0.0141 0.4641

scenario X

1.8 -0.0308 0.0101 0.1274 <.0001 -0.002 0.8667
1.5 -0.0039 0.7457 0.0701 <.0001 0.0046 0.703
1.3 0.0063 0.6108 0.0379 0.0026 -0.0011 0.9284
1.1 0.0265 0.0392 0.0176 0.1717 0.0013 0.9221
0.9 0.0468 0.0006 0.0068 0.6181 0.0026 0.8479
0.7 0.0735 <.0001 0.0137 0.3577 0.0112 0.4542
0.5 0.0901 <.0001 0.0169 0.3159 0.0063 0.7066

scenario XI

1.8 -0.0141 0.2096 0.0954 <.0001 -0.0006 0.9595
1.5 -0.0088 0.4338 0.0539 <.0001 -0.0047 0.6748
1.3 0.0042 0.7112 0.041 0.0006 0.0003 0.9763
1.1 0.01 0.3984 0.0188 0.1199 -0.0025 0.8318
0.9 0.0186 0.1347 0.0095 0.447 -0.0024 0.8436
0.7 0.0377 0.0043 0.0117 0.3733 0.0078 0.5521
0.5 0.0471 0.001 0.0083 0.5577 0.0067 0.6378

scenario XII

1.8 -0.0058 0.5778 0.0399 0.0005 -0.0038 0.7166
1.5 0.0077 0.4555 0.0457 <.0001 0.0085 0.4135
1.3 -0.0019 0.8562 0.0307 0.0063 -0.0028 0.792
1.1 -0.0008 0.9394 0.0247 0.0282 -0.0035 0.7368
0.9 -0.0044 0.6848 0.016 0.1571 -0.0083 0.4363
0.7 -0.0005 0.9624 0.0182 0.1135 -0.0059 0.5904
0.5 0.0044 0.6952 0.0186 0.1124 -0.0021 0.8542

End of Table 10
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Table 11: Parameter estimates of logistic regression for campaign participation, example 1.

Variable Class Estimate StdErr P-Value
Intercept -0.6131 0.169 0.0003

Membership pre-promotion
Club -0.7696 0.017 <.0001
Gold 0.0197 0.014 0.1633

Platinum 0 . .

Collector Miles 0.0609 0.009 <.0001
Points 0 . .

Enrollment tenure New 0.8901 0.112 <.0001
Old 0 . .

Years since enrollment -0.00049 0.001 0.3383
Months since last purchase -0.0416 0.001 <.0001
ZIP income 0 0 <.0001
ZIP Median Age -0.0045 0.001 <.0001
ZIP % female 0.3894 0.051 <.0001
Businesses per square mile -0.00001 0 0.0013
Population per square mile 0 0 0.0775
Total purchases in the prioryear 0.0161 0 <.0001
Point balance (in 10,000) 0.0699 0.002 <.0001
Points Pre-promotion (in 10,000) -0.0545 0.002 <.0001
Miles earned -0.00145 0.004 0.7202

Brand purchased

1 -0.8468 0.169 <.0001
2 -0.7752 0.168 <.0001
3 -0.1233 0.171 0.4707
4 0.5463 0.273 0.045
5 0.5943 0.793 0.4538
6 8.8199 76.021 0.9076
7 0.0861 0.181 0.6332
8 0.6679 0.293 0.0228
9 -0.8245 0.168 <.0001
10 -0.1334 0.169 0.4296
11 8.9889 42.896 0.834
12 -0.0542 0.168 0.7469
13 0.3409 0.17 0.0443
14 0.1469 0.53 0.7816
15 -5.7235 48.133 0.9053
16 0.5941 0.224 0.0081
17 0.5258 0.279 0.0598
18 -0.0193 1.067 0.9856
19 0.5033 0.176 0.0043
20 -0.1975 0.224 0.3781
21 -0.4049 0.54 0.4538
22 1.642 1.21 0.1749
23 -0.0198 0.176 0.9102
24 0.0563 0.221 0.7985
25 -1.1322 0.186 <.0001
26 -0.4927 0.343 0.1504
27 -0.9363 0.835 0.2624
28 -7.4144 29.066 0.7987
29 -0.6495 0.172 0.0002
30 0 . .

End of Table11

Albanian J. Math. 11 (2017), no. 1, 35-71.

http://archives.albanian-j-math.com


Jimmy Cela 67

Table 12: Parameter estimates of models (i) and (iii), example 1.

Variable Class Model i Model iii
Estimate StdErr P-value Estimate StdErr P-value

Intercept 2.077 0.0268 <.0001 1.7216 0.0276 <.0001

Membership
pre-promotion

Club -0.59 0.0025 <.0001 -0.412 0.0041 <.0001
Gold -0.2114 0.0022 <.0001 -0.1634 0.0023 <.0001
Platinum 0 0 . 0 0 .

Collector type Miles -0.0236 0.0017 <.0001 -0.0274 0.0017 <.0001
Points 0 0 . 0 0 .

Enrollee tenure New 0.755 0.0186 <.0001 0.6172 0.0188 <.0001
Old 0 0 . 0 0 .

Time since
enrollment (years)

-0.0145 0.0001 <.0001 -0.0147 0.0001 <.0001

Time since last
purchase (months)

-0.0009 0.0001 <.0001 0.0009 0.0001 <.0001

ZIP income 0 0 <.0001 0 0 <.0001
ZIP Median Age 0.0009 0.0001 <.0001 0.0015 0.0001 <.0001
ZIP percent female -0.0835 0.0098 <.0001 -0.1456 0.0098 <.0001
Businesses per
square mile

0 0 0.0106 0 0 0.8973

ZIP Population per
square mile

0 0 <.0001 0 0 <.0001

Total articles
purchased in year
before promotion

0.0075 0 <.0001 0.0053 0 <.0001

Membership point
balance (in 10,000)

0.0565 0.0002 <.0001 0.0488 0.0002 <.0001

Membership points
before promotion
(in 10,000)

-0.0548 0.0002 <.0001 -0.0489 0.0002 <.0001

Miles earned 0.0174 0.0006 <.0001 0.0178 0.0006 <.0001

Brand purchased

1 -0.5715 0.0267 <.0001 -0.4508 0.0268 <.0001
2 -0.6556 0.0266 <.0001 -0.543 0.0267 <.0001
3 -0.1786 0.0273 <.0001 -0.1672 0.0273 <.0001
4 -0.1941 0.051 0.0001 -0.3 0.051 <.0001
5 0.0437 0.125 0.7266 -0.0759 0.125 0.5439
6 -0.5258 0.448 0.2405 -1.0075 0.4481 0.0245
7 0.0334 0.0288 0.2457 0.0052 0.0288 0.8574
8 0.0743 0.0449 0.0983 -0.0777 0.045 0.0843
9 -0.5574 0.0266 <.0001 -0.4389 0.0267 <.0001
10 -0.1336 0.0268 <.0001 -0.1259 0.0268 <.0001
11 0.0347 0.2198 0.8746 -0.3912 0.22 0.0754
12 -0.0981 0.0266 0.0002 -0.1083 0.0266 <.0001
13 0.0516 0.0268 0.0542 -0.0385 0.0268 0.1512
14 0.0381 0.0767 0.6198 -0.0254 0.0767 0.7404
15 1.1344 0.2686 <.0001 1.3102 0.2686 <.0001
16 0.17 0.0315 <.0001 0.0459 0.0316 0.1468
17 0.1152 0.0447 0.01 -0.0028 0.0448 0.9507
18 0.0673 0.1111 0.5447 0.0616 0.1111 0.579
19 0.0961 0.0274 0.0005 -0.008 0.0275 0.7697
20 -0.206 0.0386 <.0001 -0.1821 0.0386 <.0001
21 -0.1161 0.0854 0.1738 -0.0679 0.0854 0.4266
22 0.3162 0.1584 0.0459 -0.0013 0.1585 0.9936
23 0.0156 0.0278 0.5739 0.0043 0.0278 0.8772
24 0.0618 0.034 0.0693 0.0207 0.034 0.5425
25 -0.659 0.0305 <.0001 -0.4962 0.0306 <.0001
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Continuation of Table 12
Variable Class Model i Model iii

Estimate StdErr P-value Estimate StdErr P-value
26 -0.007 0.0569 0.9023 0.0744 0.0569 0.1913
27 0.502 0.099 <.0001 0.6378 0.099 <.0001
28 -0.0955 0.2596 0.7128 0.3198 0.2597 0.2182
29 -0.0586 0.0271 0.0309 0.042 0.0272 0.1225
30 0 0 . 0 0 .

Propensity score 0.8561 0.0158 <.0001
Participation 0.2272 0.0013 <.0001 0.2206 0.0013 <.0001

End of Table 12

Table 13. Parameter estimates of propensity scores and
participation interacted with participation rate groups.

Variable Group Estimate StdErr P-Value

Propensity score·group

1 11.6011 0.2057 <.0001

2 9.1195 0.1448 <.0001

3 6.6581 0.1086 <.0001

4 5.2507 0.0899 <.0001

5 4.5788 0.0818 <.0001

participation·group

1 -0.1374 0.0073 <.0001

2 -0.0433 0.0051 <.0001

3 0.0802 0.0038 <.0001

4 0.2008 0.0031 <.0001

5 0.2204 0.0045 <.0001
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Figure 5. Propensity Score distribution in Example 2.

Figure 6. Propensity Score distribution in Example 2 across
enrollment tenure.
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