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ABSTRACT. Let X C P™ be an integral and non-degenerate variety. Fix P €
P™. In this paper we discuss the minimal integer Zle #(S;) such that S; C X
and {P} = N¥_, (S;), where () denote the linear span (in positive characteristic
sometimes this integer is +00). We use tools introduced for the study of the
X-rank of P. Our main results are when X is a Veronese embedding of P™
(it is related to the symmetric tensor rank of P) or when X is a curve.

1. INTRODUCTION

Let X C P” be an integral and non-degenerate variety defined over an alge-
braically closed field K. For any P € P™ the X-rank rx(P) of P is the minimal
cardinality of a finite set S C X such that P € (S), where { ) denote the linear span.
Let irx (P) be the minimal integer s such that there are finite sets S; C X, i > 1,
such that #(S;) < s for all ¢ and {P} = N;>1(S;). We prove that irx(P) < 400
if char(K) = 0 (Proposition 3), but we show that in positive characteristic this is
not true in a few cases (Proposition 3). We call irx (P) the identification rank of P
with respect to X or the X-identification rank of P. Let a(X, P) be the minimal
integer x such that there are finitely many finite sets S; C X, say Si,..., Sk, such
that {P} = N¥_,(S;) and Zf:l #(S;) = = (we don’t fix the integer k£ and we don’t
assume that the sets .S; are disjoint, although the last condition is always satisfied
if & = 2). The integer a(X, P) is the minimal number of points of X needed to
identify P among all the points of P™ using only the operations of linear algebra:
first taking several linear spans of points of X and then taking the intersection of
these linear subspaces. It is the analogous in projective geometry of the minimal
number of photos needed to identify a point of R3. With a smaller number of points
we may only identify a linear subspace, L, containing P, but we cannot distinguish
P from the other points of P"”. One could allow both intersections and unions of
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linear spaces (S;), S; C X, but obviously in this way the minimal number . #(.S;)
is at least the integer a(X, P) as we defined it. We say that «(X, P) is the iden-
tification number of P with respect to X. This concept has an obvious geometric
meaning, but as in the case of the usual X-rank other related technical definitions
may help to compute it. The integer irx (P) is quite useful to get an upper bound
for the integer a(X, P).

These two integers irx (P) and «a(X, P) are the key definitions introduced in
this paper. We also add other related numerical invariants related to irx (P) and
a(X, P). We will see in the proofs that these invariants are quite useful to compute
irx(P) and a(X,P). First of all, several times it is important to look at zero-
dimensional subschemes, not just finite sets, to take the linear span. This was a
key ingredient for the study of binary forms ([11], [8], §3, [20], §4) and it is very
useful also for multivariate polynomials ([8]). The cactus rank zx(P) of P with
respect to X is the minimal degree of a zero-dimensional scheme Z C X such
that P € (Z) ([10], [9]). Let izx(P) be the minimal integer ¢ such that there are
zero-dimensional subschemes Z; C X, i > 1, such that {P} = N;(Z;). Obviously
izx(P) <irx(P)and izx(P) = 1 if and only if P € X. Let v(X, P) be the minimal
integer x such that there are finitely many zero-dimensional schemes Z; C X, say
Z1,..., Zy, such that {P} =nNk_,(Z;) and Zle deg(Z;) = z. Obviously

PeX, & aX,P)==~(X,P)=1.

Most of our results are for curves and Veronese varieties (in the latter case the
X-rank of P is called the symmetric tensor rank of X) (see [2],[8],[15],[19],[20]).
In the case of Veronese varieties we give a complete classification of the possible
integers irx (P), izx(P) and «(X, P) when either P has border rank 2 (Theorem
4) or rx(P) = 3 (Theorem 5).

We prove the following results.

Proposition 1. Let X C P?* k > 1, be an integral and non-degenerate curve. For
a general P € P?* we have rx(P) =irx(P) =k +1 and o(X, P) = 2k + 2.

Theorem 1. Assume char(K) = 0. Let X C P?**! be an integral and non-
degenerate curve. Fiz a general P € P?F+1,

(a) If X is not a rational normal curve, then rx(P) = irx(P) = k+ 1 and
a(X,P) =2k + 2.

(b) If X is a rational normal curve, then rx(P) = zx(P) =k+ 1, irx(P) =
izx(P) =k+2 and o(X, P) = v(X,P) = 2k + 3.

We also have a result on strange curves (Proposition 3), results on space curves
(Theorems 2 and 3) and on rational normal curves (Propositions 5 and 6).

2. ARBITRARY CHARACTERISTIC

For any integral variety X C P" let 04(X) denote the closure in P™ of the union
of all linear spaces (S) with S C X and §(S) = t. Each 04(X) is an integral
variety, 01(X) = X and dim(o¢(X)) < min{n,t - dim(X) — 1}. For each P € P"
the X-border rank bx (P) of X is the minimal integer ¢ such that P € o,(X). Let
7(X) C P" denote the tangent developable of X, i.e. the closure in P” of all tangent
spaces TgX CP", @ € X,cg. The algebraic set 7(X) is an integral variety,

dim(7(X)) < min{n,2 - dim(X)}
and 7(X) C 02(X) (it is called the tangent developable of X).
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Notation 1. For any linear subspace V. C P" let £y : PP\ V — Pr=F=1 [ =
dim(V'), denote the linear projection from V. If V is a single point, O, we often
write £o instead of £{py.

Notation 2. Let Z(X, P) (resp. S(X, P)) denote the set of all zero-dimensional
schemes Z C X (resp. finite sets S C X) such that deg(Z) = zx(P) (resp.
#(S) =rx(P)) and P € (Z) (resp. P € (5)).

Asin [11], Lemma 2.1.5, and [8], Proposition 11, we use the following important
invariant §(X) of the embedded variety X C P".

Notation 3. Let X C P" be an integral and non-degenerate variety. Let 5(X)
denote the maximal integer ¢ such that any zero-dimensional scheme Z C X with
deg(Z) <t is linearly independent, i.e. dim({Z)) = deg(Z) — 1.

Remark 1. Let X C P” be an integral and non-degenerate subvariety. Fix P €
P If bx(P) < B(X) and X is either a smooth curve or a smooth surface, then
zx(P) =bx(P) ([11], Lemma 2.1.5, or [8], Proposition 11).

Take any integral and non-degenerate variety X C P™ and any finite set S C X
such that §(5) < B(X). By the definition of 3(X) the set .S is linearly independent.
It seems better in Notation 3 to prescribe the linearly independence of an arbitrary
zero-dimensional scheme Z C X with deg(Z) < f(X). Anyway, in many important
cases (e.g. the Veronese varieties) the set-theoretic definition and the scheme-
theoretic one chosen in Notation 3 give the same integer.

Remark 2. Obviously 8(X) < n+ 1 and equality holds if X is a rational normal
curve. We claim that equality holds if and only if X is a rational normal curve.
Indeed, if X is a curve with degree d > n + 1, then a general hyperplane section
of X contains d points spanning only a hyperplane. Now assume dim(X) > 2. Let
H C P™ be a general hyperplane. Since H N X is infinite, we may find S C H N X
with #(S) = n+ 1. Since S is linearly dependent, 5(X) < n even in this case.

Remark 3. Fix an integral and non-degenerate variety X C P™ and P € P™.
Obviously irx(P) = +oo if and only if irx(P) > n. Since the intersection of
n — 1 hyperplanes of P" contains at least a line, if rx(P) = irx(P) = n, then
a(X, P) =n% We have rx(P) = n + 1 if and only if dim(X) = 1 and X is a flat
curve in the sense of [1]. Obviously if rx(P) =n + 1, then irx(P) = +o00. See [1],
Proposition 1 and Example 1, for two classes of flat curves.

Let X C P” be an integral and non-degenerate variety and P € P". We say
that P is a strange point of X if for a general ) € X,; the Zariski tangent space
T X contains P (we allow the case in which X is a cone with vertex containing
P). The strange set of X is the set of all strange points of X (this set is always
a linear subspace, but usually it is empty). If this set is not empty, then either
char(K) > 0 or X is a cone and the strange set of X is the vertex of X ([7],[22]).
Lines and smooth conics in characteristic two are the only smooth strange curves
([L7], Theorem IV.3.9). Now fix P € P" \ X and set fp x := {p|X. Since P ¢ X,
fp x is a finite morphism and we have deg(X) = deg(fp x) - deg(fp,x(X)). The
point P is a strange point of X if and only if fp x is not separable. We recall
that a non-degenerate curve X C P, n > 3, is said to be very strange if a general
hyperplane section of X is not in linearly general position ([22]). A very strange
curve is strange ([22], Lemma 1.1).
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Proposition 2. Fiz an integral and non-degenerate variety X C P™. Set m :=
dim(X) and fix P € P™. If P is not a strange point of X, then irx(P) <n—m+1.

Proof. We will follow the proof of part (a) of [4], Theorem 1. If P € X, then
irx(P) = 1. Hence we may assume P ¢ X. First assume m = 1. Let H C P
be a general hyperplane containing P. Since P is not a strange point of X, H is
transversal to X, i.e. HNSing(X) = 0 and §(X NH) = deg(X). Since X is reduced
and irreducible, we have h'(Zx) = 0. From the exact sequence

(1) 0—ZIx —)Ix(l) _>IXQH’H(].> — 0

we get that the set HNX spans H. Since P € H, we get the existence of Sy C XNH
such that §(Sg) < n and P € (Sy). Fix general hyperplanes H;, ¢ < i < n,
containing P and such that {P} = Hy N---N H,. Take Sy, C X N H; as above.
Since {P} = N1 (SH,), we get irx (P) < n. Now assume m > 2. We use induction
on m. Take a general hyperplane H C P" containing P. Bertini’s theorem gives
that X N H is geometrically integral ([18], part 4) of Th. 1.6.3). Fix a general
Q@ € (X N H)ez. For general H we may take as ) a general point of X. Hence
P ¢ ToX. Hence P ¢ (TgX)NH =Tg(X NH). Thus P is not a strange point of
X N H. By the inductive assumption in H = P"~1 we get irxng(P) <n—m+ 1.
Since irx (P) < irxnm(P), we are done. O

Proposition 3. Fiz an integral and non-degenerate strange curve X C P". Fix
P € P*\ X and assume that P is the strange point of X. Let s (resp. pc)
denote the separable (resp. inseparable) degree of fpx. Set d := deg(X) and
c:=deg(fpx(X)). We have d = sp°c.

(a) If s > 2, then irx (P) = 2.

(b)) If s=1, c#n—1 and X is not very strange, then irx(P) < n.

(c)Ifs=1andc=n—1, thenrx(P)=n+1 and irx(P) = +o0.

Proof. Since P ¢ X, fpx is a finite morphism. Hence deg(X) = deg(fpx) -
deg(fp,x (X)), i.e. d=sp°c.

First assume s > 2. Fix general P, P, € fpx(X). By assumptions there are
Oij S f;;((Pl), 1=1,2,5=1,2, such that O;; 7é O;o. Set S; := {Oil,Oig}. Since
P € (S;), i =1,2, and the two lines (S;) are different, we get irx(P) = 2.

From now on we assume s = 1 and that X is not very strange. Let u : Y —
X denote the normalization map. Let H be the set of all hyperplanes of P!
transversal to fp x (X). We have dim(#) = n—1. Since fp x(X) is non-degenerate,
we have deg(fpx(X)) >n— 1.

First assume ¢ # n — 1. Hence for every H € H we may find a set Ay C
H N fpx(X) such that §(Ay) = n and (Ay) = H. Notice that Ay is linearly
dependent. Fix Sy C X such that §(Sg) =n and fpx(Sy) = An. If P ¢ (Su),
then Sy is linearly dependent. Since X is not very strange, we have X N (S) = §
(as sets) for a general set S C X such that §(5) = n — 1. Hence there is at most
an (n — 2)-dimensional family of linearly dependent subsets of X with cardinality
n. Hence there is a non-empty open subset H' of H such that P € (Sg) for every
H e H'. Since Ngey H =0, we get {P} = Nge (Su). Hence irx(P) < n.

Now assume ¢ =n — 1. Hence fp x(X) is a rational normal curve. In particular
fpx(X) is smooth. Since fpxou:Y — fp x(X) is a purely inseparable morphism
between smooth curves, it is injective. Hence fp x is injective. Since fp x(X) is a
rational normal curve, for every S C X with #(S) < n, the set fp x(5) is a linearly
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independent set with §(.5) elements. Hence P ¢ (S). Hence rx(P) = n+ 1. Hence
irx(P) > n, ie. irx(P) = +oo. O

All strange curves may be explicitly constructed (see [7] for the case n = 2 and
[3] for the case n > 2).

3. CURVES

We use the following obvious observations (true in arbitrary characteristic) and
whose linear algebra proof is left to the reader (parts (a) and (b) of Lemma 1 just say
that two distinct lines have at most one common point and that if P € ({Py, P»})
and irx (P) < 4, then there is S C X with §(S) < 3, P € (S) and ({P1, P}) € (S)).

Lemma 1. Let X C P? be an integral and non-degenerate curve. Fiz P € P3\ X.
(a) If rx(P) = irx(P) =2, then (X, P) = 4.
(b) If rx(P) =2 and irx(P) = 3, then a(X, P) = 5.
(c) If rx(P) =irx(P) =3, then a(X,P) =9.

Remark 4. Now assume that X is a singular curve, but take a zero-dimensional
scheme Z C X,cg such that k := deg(Z) < B(X)/2. Since Z is curvilinear, it has
finitely many linear subschemes. Since Z is linearly independent, the set ¥ :=
(Z)\z'cz (Z')) is a non-empty open subset of the (k — 1)-dimensional linear space
(Z). Fix any P € U. Lemma 3 gives zx(P) = k and that Z is the only degree k
subscheme of X whose linear span contains P. Since Z C X,eg, Z is smoothable.
Hence [8], Proposition 11, give bx (P) = k.

Lemma 2. Let X C P" be an integral and non-degenerate curve. Fix P € P™ such
that zx (P) < B(X)/2. Then:

(i) There is a unique zero-dimensional scheme A C X such that P € (A) and
deg(A) < zx(P). We have deg(A) = zx (P).

(ii) Fix any zero-dimensional scheme W C X such that deg(W) < B(X) —
zx(P) and P € (W). Then W D A. We have irx(P) > izx(P) >
B(X) — 2x (P) + 1.

(iii) Assume that A is not reduced. Then rx(P) > B(X) — zx(P) + 1. If
rx(P) = B8(X) —2x(P)+ 1, then SNA =10 for all sets S C X such that
8(S) =rx(P) and P € (S).

Proof. Assume the existence of zero-dimensional schemes A, W such that A # W,
Pe(ANW), P¢ (A for all A’ C A and deg(A) + deg(W) < B(X). Lemma 3
gives the existence of W/ C W such that P € (W'). If W’ # W, then we continue
taking W’ instead of W. We get parts (a) and (b).

The first assertion of part (iii) follows from part (ii), while the second one follows
from Lemma 3. O

Proposition 4. Let X C P? be a rational normal curve. Then irx(P) =3 for all
PeP3\ X.

Proof. Lines and smooth conics in characteristic two are the only smooth strange
curves ([17], Theorem IV.3.9). Fix P € P?\ X. Since X is not strange, we have
irx(P) < 3 (Proposition 3) (even in positive characteristic). Since oo(X) = P3
([1], Remark 1.6), Remark 3 gives zx(P) = 2. Since §(X) = 4, Lemma 3 gives
irx(P) > 3. O
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Let X be a smooth elliptic curve defined over K. We recall that the 2-rank
of X is the number, €, of pairwise non-isomorphic line bundles L on X such that
L®? = Oy ([23], Chapter III). If char(K) # 2, then € = 4, while ¢ € {1,2} if
char(K) = 2 ([23], Corollary II1.6.4).

Theorem 2. Let X C P? be a smooth elliptic curve. Fiz P € P3\ X. Let € be
the 2-rank of the elliptic curve X. There are exactly € quadric cones W;, 1 <i <€
containing X. Call O;, 1 <1i <€, the vertex of W;.

(a) The points O;, 1 < i < €, are the only points Q € P3 such that Z(X, P)
and S(X, Q) are infinite; we have irx(0;) = 2 for all i; each point O; is contained
i TX.

(b) If P € (TX UJ;_; W3), but P # O; for any i, then irx(P) = 3.

(¢) If P¢ (TX U, W;), then irx(P) =2.

Proof. Call R;; 1 < i < ¢, the pairwise non-isomorphic line bundles on X such
that R1®2 >~ Ox. Since deg(X) is even and K is algebraically closed, there is a line
bundle £ on X such that £®2 = Ox(1). Set L; := R; ® L. Tt is easy to check
that the line bundles L;, 1 < i < ¢, are pairwise non-isomorphic and that, up to
isomorphisms, they are the only line bundles A on X such that A®2 = Ox(1).

Since X is not strange, Proposition 3 gives irx(P) < 3. Since P ¢ X, Remark 3
and [1], Remark 1.6, give zx (P) = 2. Obviously, if 4(Z(X, P)) = 1, then irx(P) >
2. Since £p(X) spans P2, we have deg(¢p(X)) > 2. Hence either deg({p(X)) = 4
and £p|X is birational onto its image or deg(¢p|X) = 2.

First assume deg(¢p|X) = 2. In this case we get that Z(X, P) is infinite. Since
¢p(X) = P!, the morphism £p|X is not purely inseparable. Hence a general fiber
of it is formed by two distinct points of X spanning a line through P. Hence
irx(P) = 3. We get Ox(1) = £p(Oyp(x)(1)). Since Op.(x)(1) = R®? with R a
degree 1 line bundle on ¢p(X), £5(R) is one of the line bundle L;, 1 < i < e. Since
X # P!, ¢p|X has at least one ramification point. Hence O; € TX for all i. The
construction may be inverted in the following sense. Fix one of the line bundles
L;, 1 <i <e Since X is an elliptic curve, we have h%(X, L;) = 2 and the linear
map j : S?(H°(X, L;)) — H°(X, Ox (1)) is injective with as image a hyperplane of
the 4-dimensional linear space H°(X,Ox(1)), i.e. (by the linear normality of X)
a point, O; of P® = P(H°(X,Ox(1))¥). The definition of j gives that {5.]X has
degree 2. '

Now assume deg(¢p(X)) = 4. The genus formula for plane curves gives that
¢p(X) has 1 or 2 singular points and that if it has two singular points, then they
are either ordinary nodes or ordinary cusps. If £p(X) has either a unique singular
point or at least one cusp, then irx(P) > 2 and hence irx(P) = 3. In particular
this is the case if P € TX. Hence if P € TX and P # O;, then irx(P) = 3. Now
assume P ¢ TX. In this case irx(P) = 2 if and only if £p(X) has two singular
points. If the plane curve £p(X) has a unique singular point, then it is an ordinary
tacnode. Let T C P3 be a line secant to X, but not tangent to X. Since X is the
complete intersection of two quadric surfaces, there is a unique quadric surface, W,
containing X U {P}. Call T a line in W containing P. X UT is contained in a
unique quadric surface, W. If W is singular, i.e. if W = W; for some 4, then there
is a unique line through P and secant to X. If W is smooth, i.e. if P ¢ W, for any
i, then there are two such lines, both of them containing two distinct points of X,
because we assumed P ¢ TX. Hence irx (P) = 2 in this case. O
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Theorem 3. Let X C P? be an integral and non-degenerate curve. Assume that
X is not strange and that X has only planar singularities. There is a non-empty
open subset Q of P2\ X such that irx(P) = 2 for all P € Q if and only if X is not
a rational normal curve..

Proof. Set d := deg(X) and ¢ := p,(X). Since Proposition 4 gives that “ only if ”
part, it is sufficient to prove the “if ” part. Assume d > 4. It is easy to check the
existence of a non-empty open subset W of P2\ X such that ¢p|X is birational onto
its image for all P € W. By assumption for each O € Sing(X) the Zariski tangent
plane Tp X of X at O is a plane. Since Sing(X) is finite, we get finitely many planes
ToX, O € Sing(X), and we call W’ the intersection of W with the complement of
the union of these planes. Let G be the intersection of W’ with the complement of
the tangent developable 7(X) of X. For each P € G the morphism ¢p|X is unram-
ified and birational onto its image. Hence the singularities of the degree d plane
curve ¢p(X) comes only from the non-injectivity of £p|X and the singularities of
X. To prove Theorem 3 it is sufficient to prove that the set of all P € G such
that £p|X has at least two fibers with cardinality > 2 contains a non-empty open
subset. For any O € Sing(X) let Co(X) the cone with vertex O and the plane curve
lo(X \ {0}) asits base. Set G’ := G\ GN(Upesing(x)Co(X)). The set G’ is a non-
empty open subset of G and for every P € G’ no point of X \ Sing(X) is mapped
onto a point of £p(Sing(X)). Hence for each P € G’ the plane curve £p(X) has
#(Sing(X)) singular points isomorphic to the corresponding singular points of X,
plus some other singular points and the integer po(¢p(X))—qg = (d—1)(d—2)/2—¢q
is the sum of the contributions of the other singular points. Since X is not strange,
it is not very strange, i.e. a general secant line of X contains only two points of X
([22], Lemma 1.1). This is equivalent to the existence of a non-empty open subset
G" of G’ such that for all P € G” each singular point of {p(X) \ £p(Sing(X)) has
only two branches.

Claim: There is a non-empty open subset G of G” such that for every P € Gy,
¢p(X) \ ¢p(Sing(X)) has only ordinary double points as singularities.

Proof of the Claim: Fix P € G”. Fix O € £p(X) \ £p(Sing(X)). By the
definition of G” there are exactly two points Q1,Q2 € X such that £p(Q1) =
Lp(Q2) = O, X is smooth at Q1 and @3, and ¢p|X is unramified at each Q,;. Hence
¢p(X)\ £p(Sing(X)) has only ordinary double points as singularities if and only if
p(Tg, X) # Lp(Tg,X), i.e. if and only if the planes ({P} U Ty, X), i = 1,2, are
distinct. This is certainly true if T, X NTo,X = 0. Let V denote the set of all
(Q1,Q2) € (X \ Sing(X)) x (X \ Sing(X)) such that Q1 # Q2. Let U be the set of
all (Q1,Q2) € V such that T, X N T, X # 0. Since X is not strange, U is a union
of finitely many subvarieties of dimension < 1; it is here that we use the full force
of our assumption “ X not strange ”, not only the far weaker condition “ X not
very strange ”. Let A be the closure in P? of the union of the lines ({Q1, Q2}) with
(Q1,Q2) € U. We have dim(A) < 2. Set G; := G” N (P?\ A). By construction this
set (G satisfies the Claim.

Now we prove that we may take 2 := G;. Fix P € (G; and call = the number of
the singular points of ¢p(X) \ £p(Sing(X)). By the claim it is sufficient to prove
the inequality = > 2. Since ¢p(X) is a plane curve of degree d, it has arithmetic
genus (d — 1)(d — 2)/2. Since each point of ¢p(X) \ £p(Sing(X)) is an ordinary
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node, ¢p|X is unramified at each point of Sing(X) and ¢5'(£p(X) \ £p(Sing(X))),
we have z = p,({p(X)) — po(X) = (d — 1)(d — 2)/2 — gq. Hence it is sufficient to
prove that ¢ < (d — 1)(d — 2)/2 — 2. This is true by the assumption d > 4 and

Castelnuovo’s inequality for the arithmetic genus of space curves (use [22], Lemma
1.1, that X is not strange and that the upper bound needs only that a general plane
section of X is in linearly general position). ([

Proof of Proposition 1: Let A denote the set of all linearly independent
subsets of X with cardinality k+1. Since oy41(X) = P?* and dim (o (X)) = 2k—1
([1], Remark 1.6), we have rx(P) = k+ 1. A dimensional count gives that S(X, P)
has a one-dimensional irreducible component, I'. Fix A, B € I'. It is sufficient to
prove that {P} = (A) N (B). Since any two k-dimensional linear subspaces meet,
the set A may be seen as a general element of A and, after fixing A, P may be seen
as a general element of (A). Hence it is sufficient to prove that (4) N (B) is a single
point for a general (4, B) € A x A, i.e. to check that AU B spans P2*. For fixed
A, we have (AU B) = P?* for a general B C X, because X spans P2 O

Proof of Theorem 1: Since oy 1(X) = P?*1 and P is general, we have
rx(P) < k+1 ([1], Remark 1.6). Since dim(ox(X)) = 2k — 1 (1], Remark 1.6)
and P is general, we have rx(P) > k + 1. Hence rx(P) = k+ 1. X is not
a rational normal curve if and only if there are S;,S5, C X such that S; # Ss,
#(51) = 8(S2) = k+ 1 and P € (S1) N (S2) ([13], Theorem 3.1). Let 2 be the set
of all Q € P21\ 5 (X) such that there are only finitely many sets S C X with
#(8) = k+ 1 and Q € (S). Q is a non-empty open subset of P2*1. Since P is
general, we may assume P € ().

(i) In this step we assume that X is not a rational normal curve. Let I" denote
the set of all finite sets S C X such that £(S) = k+1 and dim((S)) = k. We proved
the existence of S; € I', i = 1,2, such that P € (S1) N (S2). To prove part (a) it is
sufficient to prove that {P} = (S1) N (Ss) for a general P. Assume that this is not
true, i.e. assume that (S7) N (S3) is a linear space of dimension p > 0. Notice that
S(X,P)={SeTl:Pe(S)} Set'(S1):={S€Tl:5nS1 =0,(S)N{S1)NQ # 0}.
Since dim(S1) = k and P € QN (S), then I'(S1) # 0 and I'(S1) has pure dimension
k. Since P is general in P?**1, we may assume that S; is general in I and that Sy
is general in one of the irreducible components of I'(S7). We get that for a general
P’ € QN (Sy) there is a p-dimensional family of sets S with P’ € (S}, absurd.

(ii) In this step we assume that X is a rational normal curve. We know that
rx(P) = k+1. We proved that irx (P) > k+2 and hence that a(X, P) > 2k+3. For
a sufficiently general P € P2**! we call Sp the only subset of X with cardinality k+1
and whose linear span contains P. Since S(X) =2k +2 and P ¢ 0;(X), Remark 3
gives zx (P) = k+1 and that Sp is the only degree k+1 zero-dimensional subscheme
of X whose linear span contains P. Hence izx(P) > k + 2 and v(X, P) > 2k + 3.

Fix a general Q € X and let ¢ : X — P?* denote the morphism induced from
lo|(X \ {®}). The morphism ¢ is an embedding of X = P! as a rational normal
curve of P?*. Fix a general P’ € P?*. Proposition 1 gives the existence of Ay, Ay C
¢(X) such that (A1) = #(A2) =k + 1 and (A1) N (Ay) = {P’}. For a fixed point
#(Q), but for general P’ we may also assume ¢(Q) ¢ (A1 U Ay). Hence there is
a unique set B; C X \ {Q} such that ¢(B;) = A;. Set E; := {Q} U B;. Fix
P" € P?**1 such that £ (P") = P'. For fixed Q, but general P’ we may consider
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P" as a general point of P2**1. We have ({Q, P"}) = (E1) N (FE,). Varying Q in X
we get irx (P) < k+2 and hence irx (P) = k+2. Let © be the set of all finite subsets
A C X such that §(A) = k+2 and P € (A). Assume for the moment the existence of
A € © such that ANSp = 0, i.e. such that {(AUSp) = 2k+3. Since B(X) = 2k +2
and (AU Sp) = 2k + 3, we get (Sp U A) = P?**1 je  dim((A) N (Sp)) = 0
(Grassmann’s formula). Since P € (A) N (Sp), we get {P} = (4) N (Sp), i.e.
a(X, P) < 2k + 3. Hence a(X, P) = y(X, P) = 2k + 3. Now assume AN Sp # ()
for all A € ©. Since P is general and oj42(X) = P?2¢*1 Terracini’s lemma (or a
dimensional count) gives dim(©) = 2. For any @) € Spset Qg :={A € 0 :Q € A}.
The proof of the inequality irx (P) < 2k + 3 also shows dim(©¢) = 1. Since Sp is
finite, we get dim(©) = 1, a contradiction. a

4. VERONESE VARIETIES

For all integers m > 1 and d > 1 let vy : P — P", n := (mntd) — 1 denote the
order d embedding of P™ induced by the vector space of all degree d homogeneous
polynomials in d + 1 variables. Set X, 4 := vq(P™).

We often use the following elementary lemma ([5], Lemma 1).

Lemma 3. Fiz any P € P and two zero-dimensional subschemes A, B of P™ such
that A# B, P € (A), P € (B), P ¢ (A") forany A’ C A and P ¢ (B') for any
B’ C B. Then h*(P",Zaup(1)) > 0.

We first need the case m = 1 of Theorem 4, i.e. we need to study the case in
which X is a rational normal curve (Propositions 5,6 and 7).

Proposition 5. Let X C P?, d > 3, be a rational normal curve. Fiz a set A C X
with $(A) = 2 and any P € (A)\ A. Then rx(P) = zx(P) = 2, irx(P) =
izx(P) =d and a(X, P) = v(X, P) = d+ 2. Moreover, there is a set B C X such
that §(B) = d and {P} = (4) N (B).

Proof. Since (X) = d+1 > 3, we have A = (A) N X. Hence P ¢ X. Hence
irx(P) =2 =izx(P). Fix a zero-dimensional scheme W C X such that P € (W),
P ¢ (W) for any W C W and W # A. Since 3(X) = d + 1, Lemma 3 gives
deg(W) > d. Hence irx(P) > izx(P) > d and a(X, P) > (X, P) > d + 2. Hence
to conclude the proof it is sufficient to find a set B C X such that #(B) = d and
{P} = (A)Nn(B). Set Y := ¢p(X). Since P € (A) and P ¢ X, the curve Y is
a linearly normal curve with degree d, arithmetic genus 1 and a unique singular
point, which is an ordinary node. Fix a general hyperplane H C P?! and set
F :=Y NX. Since H is general, it does not contain the singular point of ¥ and
it is transversal to Y. Hence FE is a set of d points and there is B C X such that
#(B) = d and {p(B) = E. Since #(B) < f(X), B is linearly independent. Since F
is linearly dependent, we have P € (B). Since (AUB) =d+2 = 3(X) + 1, we
have (AU B) = P?. Hence Grassmann’s formula gives {P} = (A) N (B). O

Proposition 6. Let X C P, d > 3, be a rational normal curve. Fiz P € 7(X)\ X,
i.e. fix P € 09(X) such that rx(P) > 2. Then zx(P) =2, izx(P) =d, v(X,P) =
d+2, rx(P) = d, irx(P) = d and o(X,P) = d*>. Moreover, there are a zero-
dimensional A C X and a finite set B C X such that deg(A) = 2, #(B) = d and
{P} = (A)n(B).

Proof. First of all we explain the “ ie.” part. Since 5(X) > 2, Remark 3 gives
that for each @ € 02(X) \ X there is a degree 2 zero-dimensional scheme Ag C X
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such that @ € (Ag). Since f(X) > 4, we also get the uniqueness of Ag. Hence
P € 7(X) & Ap is not reduced < rx(P) > 2. Set A := Ap. Lemma 3 gives
rx(P) > d and izx(P) > d. We repeat the proof of Proposition 5 (now Y is a
degree d linearly normal curve with a cusp). We get the existence of a set B C X
such that #(B) = d and {P} = (A) N (B). Hence izx(P) = d, v(X, P) = d. Since
d > 3, X is not strange. Hence irx(P) < d (Proposition 3). Since rx(P) > d, we
get rx(P) = irx(P) = d. Since rx(P) = d, P is contained in no linear space of
dimension < d — 2 spanned by a finite subset of X. Hence a(X, P) = d* (Remark
3). O

Proposition 7. Let X C P?, d > 5, be a rational normal curve. Fiz a set A C X
such that $(A) = 3 and any P € (A) such that P ¢ (A"Y for any A’ C A. Then
rx(P)=zx(P) =3, irx(P)=1izx(P)=d—1 and a(X,P) =v(X,P) =d +2.

Proof. Since (X) > 5, Lemma 3 gives zx (P) = 3, izx (P) > B(X)+1—4(A) =d—1
and hence rx(P) =3, irx(P) >d—1, a(X,P) > v(X,P) > d+2.

Set Y :={£p(X). Since f(X)=d+1>5and P ¢ (A’) for any A’ C A, (p|X is
an embedding. Hence Y is a smooth rational curve of degree d spanning P?~!. Fix
any F C X \ A with §(F) =d — 4 and set F' := ¢p(F). Since {(AU E) < f(X), F
is a set of d — 4 points of Y spanning a (d — 5)-dimensional linear subspace disjoint
from the line ({p(A)).

Claim: For general £ we have (F)) NY = F (as schemes) and £ pm[(Y \ F)
extends to an embedding ¢ : Y — P? with ¢(Y) C P? a smooth and rational curve
of degree 4 with ¢(£p(A)) the union of 3 distinct and collinear points.

Proof of the Claim: The map ¢ is induced by the linear projection of X from
the linear subspace ({P} U E). Since ENA = and §(E U A) < B(X), we have
(E) N (A) = 0. Hence ¢(A) is the union of 3 distinct collinear points. For degree
reasons we get (FYNY = F (as schemes), i.e. deg(¢)-deg(¢p(Y)) = deg(Y)—d+4 =
4. Since ¢(Y) spans P3, we get deg(¢) = 1. Since ¢(Y) has a 3-secant line, the
curve Y is not the complete intersection of two quadric surfaces. Hence ¢(Y) is
smooth and rational.

Since h%(P3, Ops(2)) = 10 = h°(PL, Op1(8)) + 1, the Claim implies the existence
of a quadric surface T' containing ¢(Y). Since ¢(Y") has genus # 1, T' is not a cone
([17], V.Ex.2.9). Hence ¢(Y) is a curve of type (1,3) on the smooth quadric surface
T. The set ¢(¢p(A)) is contained in a line of type (1,0). Let G be the intersection
of ¢(Y) with a general line of type (1,0) of T. Since any two different lines of
T are disjoint, we have ¢(A) NG = 0. Since ¢(¢p(A)) is reduced, in arbitrary
characteristic we get that G is reduced. Since the set ¢(F) is finite, for a general
line of type (1,0) on T' we have G N ¢(F) = 0. Hence there is G’ C Y \ F such
that ¢(G’) = G. Let B C X be the only set such that {p(B) = F UG’. Since
#(B) < B(X), we have dim({B)) = d — 2. Since G is linearly dependent, F UG’ is
linearly dependent. Hence P € (B). Since ANB =0 and 3(X) =d+1 < {§(AUB),
we have (AU B) = P%. Hence Grassmann’s formula gives that (4) N (B) is a single
point. Hence {P} = (A4) N (B). Hence irx(P) <d—1 and a(X, P) < d+ 2. Since
we proved the opposite inequalities, we are done. Il

Theorem 4. Fiz integers m > 1 and d > 3. Set n := ng,,q = (mr:d) —1 and
X = Xm,d- Fix P € UQ(Xm’d) \X
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(a) Assume P ¢ 7(X), i.e. assumerx(P)=2. Thenirx(P)=d, zx(P) =2,
izx(P)=d and o(X,P) =~(X,P)=d + 2

(b) Assume P € T(X)\X. Then zx(P) =2, izx(P) =irx(P)=d,v(X,P) =
d+2. If m =1, then o(X, P) = d%. If m > 2, then a(X, P) = 3d.

Proof. Since d > 3, we have 02(X) # 7(X), 02(X)\7(X) = {P € 02(X) : rx(P) =
2} and rx(P) = d for each P € 7(X) \ X ([8], Theorem 32). Since the case
m = 1 is true (Propositions 5 and 6), we assume m > 2. Since S(X) =d+1 (e.g.
by [8], Lemma 34), Remark 3 and Lemma 3 imply the existence of a unique zero-
dimensional scheme Z C X such that deg(Z) =2 and P € (Z). We have rx (P) = 2
if and only if Z is reduced. Let A C P™ be the degree 2 zero-dimensional scheme
such that vg(A) = Z. Let L C P™ be the line spanned by A. Set R := vy(L).
Since Z C R, we have rx(P) < rr(P), zx(P) < zr(P), irx(P) < irgr(P),
izx(P) < izg(P), a(X,P) < a(R,P) = d and v(X,P) < (R, P). Proposi-
tions 5 and 6 give irg(P) = izg(P) = d and v(R,P) = d+ 2. Let W C P™
be a zero-dimensional scheme such that P € (vg(W)), P ¢ (vg(W’)) for any
W' C W and W # A. Since 8(X) > d + 1, Lemma 3 gives deg(W) > d.
Hence izx(P) > d and v(X,P) > d + 2. Hence irx(P) = izx(P) = d+ 2 and
Y(X,P) = d+ 2. In case (a) we have a(X, P) = d + 2, because a(R,P) = d + 2
(Proposition 5). Now assume that Z is not reduced, i.e. assume P € 7(X). Let
C' C P™ be a smooth conic containing A. The curve v4(C) is a degree 2d ra-
tional normal curve in its linear span. Since P € (Z) C (vg(C)), the “ More-
over 7 part of Proposition 6 applied to v4(C) gives the existence of a set B C C
such that #(B) = 2d and (Z) N (v4(B)) = {P}. Let M C P™ be the plane con-
taining C'U L. Since the restriction maps H°(P™, Opn (d)) — H°(M, Opr(d)) and
H(M,Op(d)) — H(T, Or(d)) are surjective for T = L, T = C, and T = CUL, we
get dim((vg(CUL))) = 3d—1, dim((v4(C))) = 2d and dim((R)) = d. Hence Grass-
mann’s formula gives (v4(C))N(R) = (Z). Fix E C L such that {P} = (Z)N(v4(E))
(the “ Moreover ” part of Proposition 6). Since v4(E) C R, P is the only point
in the intersection of (v4(B)) C (v4(C)) and (v4(E). Hence a(X, P) < 3d. Now
assume a := a(X, P) < 3d and take S = S; U---U S, C P™ such that §(S) = a
and {P} = N¥_,(va(S;)). We proved that #(S;) > d for all i. Hence k = 2,
2d < a <3d—1and d<§(S;) <2d—1 for all i.

Claim: Take a finite set E C P™ such that P € (v4(E)), P ¢ (E') for any
E'CE,E+# A, and deg(F) <2d — 1. Then E C L.

Proof of the Claim: Since P € (Z), Lemma 3 and [8], Lemma 34, give the
existence of a line D C P™ such that deg(D N (E U A)) > d + 2. First we will
check that £ C D and then we will see that D = L. Let H C P™ be a general
hyperplane containing D. Since F is reduced, A is curvilinear and H is general,
we have HN(AUE)=DN(AUE). Let Resg(AU E) denote the residual scheme
of AU FE with respect to H, i.e. the closed subscheme of P™ with Zaug : Ty as
its ideal sheaf. Since deg(Resg(AUE)) = deg(AU E) —deg((AUE)N H)) < d,
we have b (P™, Tges,, (aur)(d — 1)) = 0. Since A is connected and not reduced, [6],
Lemma 4, gives AUE C H. Since this is true for a general H containing D, we get
E C D. We also get A C D and hence D = L.

Apply the Claim first to S; and then to S3. We get S C L. Hence a(X, P) =
a(R, P) = d?, a contradiction. O
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Remark 5. Fix a linear subspace U C P™ and take P € (v4(U)). We have
TX,.a(P) = Tu,w)(P) ([21], Proposition 3.1) and every S C X evincing rx(P)
is contained in v4(U) ([19], Exercise 3.2.2.2). Part (b) of Theorem 4 shows that
sometimes irx (P) < iry, @ (P).

Theorem 5. Assumem > 2 andd > 5. Fix a finite set A C P™ such that §(A) = 3.
Set X := X, 4 and n := (m;;d) — 1. Fiz P € (v4(A)) such that P ¢ (vq(A")) for
any A" C A.

(a) Assume that A is contained in a line. Thenrx(P) = zx(P) =3, irx(P) =
izx(P)=d—1 and (X, P) =~v(X,P) =d+2.

(b) Assume that A is not contained in a line. Then rx(P) = zx(P) =3 and
a(X,P) =2d+2.

Proof. Since 5(X) > 5, v4(A) is the only subscheme of X with degree < 3 whose
linear span contains P. Hence rx(P) = zx(P) = 3. Since 8(X) = d+ 2, Lemma 3
also gives irx (P) > izx(P) >d—1and (X, P) > v(X,P) > d + 2.

First assume the existence of a line L C P™ such that A C L. Set R := vy4(L).
Since P € (R), Proposition 7 gives irx(P) < irg(P) =d — 1, izx(P) < izgr(P) =
d—1, a(X,P) <a(R,P)=d+2and y(X, P) <v(R,P) = d+ 2, concluding the
proof of part (a).

Now assume that A is not contained in a line. Write A = {O1,04,03}. Fix
i €{1,2,3} and set {j,h} :={1,2,3}\ {i}. Set L; :== ({0;,04}) C P™. Since P €
(va(A)) and P ¢ (vy(A")) for any A" C A, the set ({P,vq(0;)}) N {{va(On),va(O;)})
is a single point, P;. Notice that P; € (v4(L;)) and that 7,7, (P;) = 2. The
“ Moreover ” part of Proposition 5 gives the existence of a set F; C L; such that
8(Si) = dand {P} = ({vr4(On), va(O;)})N(va(E;)). Hence (va(A))N{ra({0i}UE;))
is the line ({v4(0;),P;}). Taking the intersection of two of these lines we get
irx(P) <d+1 and a(X,P) < 2d + 2. Since rx(P) = d + 1 (proof of this case
in [8], Theorem 37), we get irx(P) = d + 1. Lemma 3 also gives izx(P) > d +1
and that for each subscheme W C P™ with deg(W) < d+ 1 and P € (W) we
have W D A. Hence izx(P) = d+ 1. Assume a := o(X,P) < 2d + 1 and
take S = Sy U--- U S, with {P} = Nk, (v4(S:)) and #(S1) + -+ + #(Sk) = a.
Since a < 2d + 1 and each subscheme W C P™ with deg(W) < d+ 1 and P € (W)
contains A, we get k = 2 and that one of the sets S; is just A. Since P € (S1)N{Ss),
P ¢ (U) for any U C S;, i = 1,2, and §(S; U S2) < 2d + 1, there is a line D C P™
such that (D N (S1US2)) > d+2and S1\S1ND = 53\ S2ND ([6], Lemma
4). Since S1 NSy =0, we get S; U Sy C D. Since A is not contained in a line and
A = §; for some i, we get a contradiction. O
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