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Abstract. The paper devoted to implementation of the public key algorithm
based on directed algebraic graphs over finite commutative ring K and their

symmetries. First we expand the key space Kn of graph based encryption

algorithm in such way that arbitrary chosen plaintext can be converted to ar-
bitrary chosen ciphertext. Second, we conjugate chosen encryption map, which

is a composition of several “elementary” cubical polynomial automorphisms of

a free module Kn with special invertible affine transformation of Kn . Finally
we compute symbolically corresponding cubic public map g of Kn onto Kn.

We evaluate time for the generation of g, time of execution of public map,

number of monomial expression in the list of corresponding public rules.

1. Introduction

Cloud computing systems open a new perspective in various aspects of comput-
ing.

Some security issues raised by cloud computing are motivated by virtualization.
Dynamic scalability or “elasticity” will help generalize high-performance computing
and very large data sets in applications. But the real gains in performance depend
heavily on the predictability of physical and virtualized resources. It means that
the balancing of performance against security and the adaptation of HPC or VLDB
techniques to cloud computing are important issues and will have long-lasting sci-
entific content.

The direction of Key Dependent Message (KDM) secure encryption in Cryptog-
raphy can bring an appropriate security tools for Cloud Computing.

In publications [4] were proposed classes of stream ciphers and public key algo-
rithms based on explicit construction of families of algebraic graphs of large girth.
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140 CUBIC PUBLIC KEYS BASED ON ALGEBRAIC GRAPHS

It was shown that for each finite commutative ring K we can create a cubical poly-
nomial map f of Kn onto Kn depending on string of regular elements (non zero
divisors (α1α2, . . . , αt) password). If t ≤ (n + 5)/2 then different strings produce
different ciphertext. One can use such a map as a stream cipher. It is possible to
combine f with two invertible sparse affine transformations τ1 and τ2 and use the
composition g = τ1fτ2 as a public rule. Public user is not able to decrypt without
knowledge of τ1, τ2 and string (α1α2, . . . , αt).

One can set τ2 as the inverse of τ1 and use the ”symbolic” generator g and related
cyclic groupfor the Diffie -Hellman key exchange protocol. We can prove that the
order of g is growing with the grows of parameter n

This publication is devoted to the implementation of generalisation of the above
algorithm. We consider linear transformations Ta depending on the string a =
(β1, β2, . . . , βd), whered = [n/4] and use fTa instead of f .

The constraction of transformation f use graphs D(n,K) (graphs of large girth
for K = Fq, which was very useful for creation of good LDPS codes in Coding
Theory. The transformation Ta is a special automorphism of graph D(n,K).

In fact the key space of all passwords g = fTa has the following property in case
of char k-for each pair plaintext p - ciphertext c there is a transform g sending p
to c. So we hope that usage of families of large girth and their automprphism may
lead to good public keys.

Classical problems on Turan type problems on studies of the maximal size of
simple graphs without prohibited cycles are attractive for mathematicians because
they are beautiful and difficult (see [2], [9]). The concept of a family of simple
graphs of large girth appears as an important tool to study such problems. Later the
applications of these problems in Networking [1], Coding Theory and Cryptography
were found (see [11] and further references).

Section 2 is devoted to the concept of the girth indicator and the family of large
girth for digraphs.

In Section 3 we consider the definition of a family of affine algebraic digraphs
of large girth over commutative rings. Explicit constructions of such families of
graphs can be used for the development of public keys and a key exchange protocol.
We discuss the connection of these algorithms with the group theoretical discrete
logarithm problem.

The known examples of families of simple algebraic graphs were constructed just
in the case of finite fields (see [5]). In section 4 we consider an explicit construction
of a family of affine algebraic digraphs of large girth over each finite commutative
ring containing at least 3 regular elements. Different properties of this family are
investigated in [12], [11], [13], [14] , [8], [7].

Section 5 is devoted to the latest implementation of the public key algorithm
based on one of the family described in section 4.

2. On the families of directed graphs of large girth

The missing theoretical definitions on directed graphs the reader can find in [6].
Let Φ be an irreflexive binary relation over the set V , i.e., Φ ∈ V × V and for each
v the pair (v, v) is not the element of Φ.

We say that u is the neighbour of v and write v → u if (v, u) ∈ Φ. We use the
term balanced binary relation graph for the graph Γ of irreflexive binary relation φ
over a finite set V such that for each v ∈ V the sets {x|(x, v) ∈ φ} and {x|(v, x) ∈ φ}
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have the same cardinality. It is a directed graph without loops and multiple edges.
We say that a balanced graph Γ is k-regular if for each vertex v ∈ Γ the cardinality
of {x|(v, x) ∈ φ} is k.

Let Γ be the graph of binary relation. The path between vertices a and b is the
sequence a = x0 → x1 → . . . xs = b of length s, where xi, i = 0, 1, . . . s are distinct
vertices.

We say that the pair of paths a = x0 → x1 → · · · → xs = b, s ≥ 1 and
a = y0 → y1 → · · · → yt = b, t ≥ 1 form an (s, t)- commutative diagram Os,t if
xi 6= yj for 0 < i < s, 0 < j < t. Without loss of generality we assume that s ≥ t.

We refer to the number max(s, t) as the rank of Os,t. It is ≥ 2, because the
graph does not contain multiple edges.

Notice that the graph of antireflexive binary relation may have a directed cycle
Os = Os,0: v0 → v1 → . . . vs−1 → v0, where vi, i = 0, 1, . . . , s−1, s ≥ 2 are distinct
vertices.

We will count directed cycles as commutative diagrams.
For the investigation of commutative diagrams we introduce girth indicator gi,

which is the minimal value for max(s, t) for parameters s, t of a ommutative diagram
Os,t, s+ t ≥ 3. The minimum is taken over all pairs of vertices (a, b) in the digraph.
Notice that two vertices v and u at distance < gi are connected by the unique path
from u to v of length < gi.

We assume that the girth g(Γ) of a directed graph Γ with the girth indicator
d + 1 is 2d + 1 if it contains a commutative diagram Od+1,d. If there are no such
diagrams we assume that g(Γ) is 2d+ 2.

In case of a symmetric binary relation gi = d implies that the girth of the graph
is 2d or 2d − 1. It does not contain an even cycle 2d − 2. In general case gi = d
implies that g ≥ d+ 1. So in the case of the family of graphs with unbounded girth
indicator, the girth is also unbounded. We also have gi ≥ g/2.

In the case of symmetric irreflexive relations the above mentioned general defi-
nition of the girth agrees with the standard definition of the girth of simple graph,
i.e., the length of its minimal cycle.

We will use the term the family of graphs of large girth for the family of balanced
directed regular graphs Γi of degree ki and order vi such that gi(Γi) is ≥ clogkivi,
where c′ is a constant independent of i.

As it follows from the definition g(Γi) ≥ c′logki(vi) for an appropriate constant
c′. So, it agrees with the well known definition for the case of simple graphs.

The diameter of the strongly connected digraph [6] is the minimal length d of
the shortest directed path a = x0 → x1 → x2 · · · → xd between two vertices a
and b. Recall that a graph is k-regular, if each vertex of G has exactly k outputs.
Let F be the infinite family of ki regular graphs Gi of order vi and diameter di.
We say, that F is a family of small world graphs if di ≤ Clogki(vi), i = 1, . . . for
some constant C independent on i. The definition of small world simple graphs and
related explicit constructions the reader can find in [3]. For the studies of small
world simple graphs without small cycles see [9], [12].

3. On the K-theory of affine graphs of high girth and its
cryptographical motivations

Let K be a commutative ring. A directed algebraic graph φ over K consists of two
things, such as the vertex set Q being a quasiprojective variety over K of nonzero
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dimension and the edge set being a quasiprojective variety φ in Q×Q. We assume
that (xφy means (x, y) ∈ φ).

The graph φ is balanced if for each vertex v ∈ Q the sets Im(v) = {x | vφx} and
Out(v) = {x |xφv} are quasiprojective varieties over K of the same dimension.

The graph φ is homogeneous (or (r, s)-homogeneous) if for each vertex v ∈ Q the
sets Im(v) = {x|vφx} and Out(v) = {x|xφv} are quasiprojective varieties over F
of fixed nonzero dimensions r and s, respectively.

In the case of balanced homogeneous algebraic graphs for which r = s we will
use the term r-homogeneous graph. Finally, regular algebraic graph is a balanced
homogeneous algebraic graph over the ring K if each pair of vertices v1 and v2 is a
pair of isomorphic algebraic varieties.

Let Reg(K) be the totality of regular elements (or nonzero divisors) of K, i.e.,
nonzero elements x ∈ K such that for each nonzero y ∈ K the product xy is
different from 0. We assume that the Reg(K) contains at least 3 elements. We
assume here that K is finite, thus the vertex set and the edge set are finite and we
get a usual finite directed graph.

We apply the term affine graph for the regular algebraic graph such that its
vertex set is an affine variety in Zarisski topology.

Let G be r-regular affine graph with the vertex V (G), such that Out v, v ∈ V (G)
is isomorphic to the variety R(K). Let the variety E(G) be its arrow set (a binary
relation in V (G)× V (G)). We use the standard term perfect algebraic colouring of
edges for the polynomial map ρ from E(G) onto the set R(K) (the set of colours) if
for each vertex v different output arrows e1 ∈ Out(v) and e2 ∈ Out(v) have distinct
colours ρ(e1) and ρ(e2) and the operator Nα(v) of taking the neighbour u of vertex
v ( v → u) is a polynomial map of the variety V (G) into itself.

We will use the term rainbow-like colouring in the case when the perfect algebraic
colouring is a bijection. Let dirg(G) be a directed girth of the graph G, i.e., the
minimal length of a directed cycle in the graph. Obviously gi(G) ≤ dirg(G).

Studies of infinite families of directed affine algebraic digraphs over commutative
rings K of large girth with the rainbow-like colouring is a nice and a difficult
mathematical problem. Good news is that such families do exist. In the next
section we consider the example of such a family for each commutative ring with
more than 2 regular elements.

Here, at the end of section, we consider cryptographical motivations for studies
of such families.

1) Let G be a finite group and g ∈ G. The discrete logarithm problem for group
G is about finding a solution for the equation gx = b where x is unknown positive
number. If the order |g| = n is known we can replace G on a cyclic group Cn.
So we may assume that the order of g is sufficiently large to make unfeasible the
computation of n. For many finite groups the discrete logarithm problem is NP
complete.

Let K be a finite commutative ring and M be an affine variety over K. Then
the Cremona group C(M) of all polynomial automorphism of the variety M can
be large. For example, if K is a finite prime field Fp and M = Fp

n then C(M) is a
symmetric group Spn .

Let us consider the family of affine graphs Gi(K), i = 1, 2, . . . with the rainbow-
like algebraic colouring of edges such that V (Gi(K)) = Vi(K), where K is a com-
mutative ring, and the colour sets are algebraic varieties Ri(K). Let us choose a



CUBIC PUBLIC KEYS BASED ON ALGEBRAIC GRAPHS 143

constant k. The operator Nα(v) of taking the neighbour of a vertex v corresponding
to the output arrow of colour α are elements of Ci = C(Vi(K)) . We can chose a
relatively small number k to generate h = hi = Nα1Nα2 . . . Nαk

in each group Ci,
i = 1, 2, . . .

Let us assume that the family of graphs Gi(K) is the family of graphs of large
girth. It means that the girth indicator gii = gi(Gi(K)) and the parameter dirgi =
dirg(Gi(K)) are growing with the growth of i. Notice that |hi| is bounded below
by dirgi/k. So there is j such that for i ≥ j the computation of |hi| is impossible.
Finally we can take the base g = u−1hju where u is a chosen element of Cj to hide
the graph up to conjugation. We may use some package of symbolic computations
to express the polynomial map g via the list of polynomials in many unknowns.
For example, if Vj(K) is a free module Kn then we can write g in a public mode
fashion
x1 → g1(x1, x2, . . . , xn), x2 → g2(x1, x2, . . . , xn), . . . , xn → gn(x1, x2, . . . , xn).
The symbolic map g can be used for Diffie - Hellman key exchange protocol (see

[3] for the details). Let Alice and Bob be correspondents. Alice computes the
symbolic map g and send it to Bob via open channel. So the variety and the map
are known for the adversary (Cezar).

Let Alice and Bob choose natural numbers nA and nB , respectively.
Bob computes gnB and sends it to Alice, who computes (gnB )nA , while Alice

computes gnA and sends it to Bob, who is getting (gnA)nB . The common informa-
tion is gnAnB given in ”public mode fashion”.

Bob can be just a public user (no information on the way in which the map g
were cooked) , so he and Cezar are making computations much slower than Alice
who has the decomposition g = u−1Nα1Nα2 . . . Nαk

u.
We may modify slightly the Diffie - Hellman protocol using the action of the

group on the variety. Alice chooses a rather short password α1, α2, . . . , αk, computes
the public rules for the encryption map g and sends them to Bob via an open channel
together with some vertex v ∈ Vj(K).

Then Alice and Bob choose natural numbers nA and nB , respectively.
Bob computes vB = gnB (v) and sends it openly to Alice, who computes (gnA)(vB),

while Alice computes vA = gnA(v) and sends it to Bob, who is getting (gnB )(vA).
The common information is the vertex gnA×nB (v).
In both cases Cezar has to solve one of the equations EnB (uA) = z or EnA(uB) =

w for unknowns nB or nA, where z and w are known points of the variety.
2) We can construct the public key map in the following manner:
The key holder (Alice) chooses the variety Vj(K) and the sequence α1, α2, . . . , αt

of length t = t(j) to determine the encryption map g as above. Let dim(Vj(K) =
n = n(j) and each element of the variety be determined by independent parameters
x1, x2, . . . , xn. Alice presents the map in the form of public rules, such as
x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn), . . . , xn → fn(x1, x2, . . . , xn).
We can assume (at least theoretically) that the public rule depending on param-

eter j is applicable to encryption of potentially infinite text (parameter t is a linear
function on j now).

For the computation she may use the Gröbner base technique or alternative
methods, special packages for the symbolic computation (popular ”Mathematica”
or ”Maple”, package ”Galois” for ”Java” as well special fast symbolic software). So
Alice can use the decomposition of the encryption map into u−1, maps of kind Nα
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and u to encrypt fast. For the decryption she can use the inverse graph Gj(K)
−1

for which V Gj(K)
−1

= V Gj(K) and vertices w1 and w2 are connected by an arrow
if and only if w2 and w1 are connected by an arrow in Gj(K). Let us assume that

colours of w1 → w2 in Gj(K)
−1

and w2 → w1 in Gj(K) are of the same colour. Let

N ′α(x) be the operator of taking the neighbour of vertex x in Gj(K)
−1

of colour α.
Then Alice can decrypt applying consequently u−1, N ′αt

, N ′αt−1
, . . . , Nα1 and u to

the ciphertext. So the decryption and the encryption for Alice take the same time.
She can use a numerical program to implement her symmetric algorithm.

Bob can encrypt with the public rule but for a decryption he needs to invert the
map. Let us consider the case tj = kl, where k is a small number and the sequence
α1, α2, . . . , αtj has the period k and the transformation h = u−1Nα1Nα2 . . . Nαk

u
is known for Bob in the form of public key mode. In such a case a problem to find
the inverse for g is equivalent to a discrete logarithm problem with the base h in
related Cremona group of all polynomial bijective transformations.

Of course for further cryptoanalysis we need to study the information on possible
divisors of order of the base of related discrete logarithm problem, alternative meth-
ods to break the encryption. In the next section the family of digraphs REn(K)
will be described.

3) We may study security of the private key algorithm used by Alice in the
algorithm of the previous paragraph but with a parameter t bounded by the girth
indicator of graph Gj(K). In that case different keys produce distinct ciphertexts
from the chosen plaintext. In that case we prove that if the adversary has no access
to plaintexts then he can break the encryption via the brut-force search via all keys
from the key space. The encryption map has no fixed points.

4. On the family of affine digraph of large girth over commutative
rings

E. Moore used term tactical configuration of order (s, t) for biregular bipartite
simple graphs with bidegrees s + 1 and r + 1. It corresponds to the incidence
structure with the point set P , the line set L and the symmetric incidence relation
I. Its size can be computed as |P |(s+ 1) or |L|(t+ 1).

Let F = {(p, l)|p ∈ P, l ∈ L, pIl} be the totality of flags for the tactical configu-
ration with partition sets P (point set) and L (line set) and an incidence relation
I. We define the following irreflexive binary relation φ on the set F :

Let (P,L, I) be the incidence structure corresponding to regular tactical config-
uration of order t.

Let F1 = {(l, p)|l ∈ L, p ∈ P, lIp} and F2 = {[l, p]|l ∈ L, p ∈ P, lIp} be two copies
of the totality of flags for (P,L, I). Brackets and parenthesis allow us to distinguish
elements from F1 and F2. Let DF (I) be the directed graph (double directed flag
graph) on the disjoint union of F1 with F2 defined by the following rules

(l1, p1)→ [l2, p2] if and only if p1 = p2 and l1 6= l2,
[l2, p2]→ (l1, p1) if and only if l1 = l2 and p1 6= p2.
Below we consider the family of graphs D(k,K), where k > 5 is a positive integer

and K is a commutative ring. Such graphs are disconnected and their connected
components were investigated in [13] ( for the case when K is a finite field Fq see
[5]).
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Let P and L be two copies of Cartesian power KN , where K is the commutative
ring and N is the set of positive integer numbers. Elements of P will be called
points and those of L lines.

To distinguish points from lines we use parentheses and brackets. If x ∈ V , then
(x) ∈ P and [x] ∈ L. It will also be advantageous to adopt the notation for co-
ordinates of points and lines introduced in [15] for the case of general commutative
ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . . ].

The elements of P and L can be thought as infinite ordered tuples of elements
from K, such that only a finite number of components are different from zero.

We now define an incidence structure (P,L, I) as follows. We say that the point
(p) is incident with the line [l], and we write (p)I[l], if the following relations between
their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i

l′i,i − p′i,i = li,i−1p0,1

li,i+1 − pi,i+1 = li,ip0,1

li+1,i − pi+1,i = l1,0p
′
i,i

(These four relations are defined for i ≥ 1, p′1,1 = p1,1, l′1,1 = l1,1). This incidence
structure (P,L, I) we denote as D(K). We identify it with the bipartite incidence
graph of (P,L, I), which has the vertex set P ∪ L and the edge set consisting of all
pairs {(p), [l]} for which (p)I[l].

For each positive integer k ≥ 2 we obtain an incidence structure (Pk, Lk, Ik)
as follows. First, Pk and Lk are obtained from P and L, respectively, by simply
projecting each vector onto its k initial coordinates with respect to the above order.
The incidence Ik is then defined by imposing the first k−1 incidence equations and
ignoring all others. The incidence graph corresponding to the structure (Pk, Lk, Ik)
is denoted by D(k,K).

For each positive integer k ≥ 2 we consider the standard graph homomorphism
φk of (Pk, Lk, Ik) onto (Pk−1, Lk−1, Ik−1) defined Lk by simply projection of each
vector from Pk and Lk onto its k − 1 initial coordinates with respect to the above
order. The transformation t′m,m(x) acts on vertices of D(K) by the following rules.

(a) l′m,m → l′m,m + x, p′m,m → p′m,m + x.
(b) lm+1,m → lm+1,m + l1,0x.
(c) lm+1,m+1 → lm+1,m+1 + l1,1x, pm+1,m+1 → lm+1,m+1 + p1,1x
(d) lm+r,m+r → lm+r,m+r + l′r,rx, pm+r,m+r → pm+r,m+r + p′r,rx, r ≥ 2.
(e) lm+r+1,m+r → lm+r+1,m+r + lr+1,rx, pm+r+1,m+r → pm+r+1,m+r + pr+1,rx,

r ≥ 2.
(f) All other components are unchanged.
We define the transformation Ta, where a = (β22, β33, . . . ) as a product of all

transformations t′i,i(βii)
Let DEn(K) (DE(K)) be the double directed graph of the bipartite graph

D(n,K) (D(K), respectively). Remember, that we have the arc e of kind (l1, p1)→
[l2, p2] if and only if p1 = p2 and l1 6= l2. Let us assume that the colour ρ(e) of the
arc e is l11,0 − l21,0.
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Recall, that we have the arc e′ of kind [l2, p2] → (l1, p1) if and only if l1 = l2

and p1 6= p2. Let us assume that the colour ρ(e′) of arc e′ is p11,0 − p21,0. It is easy
to see that ρ is a perfect algebraic colouring.

If K is finite, then the cardinality of the colour set is (|K| − 1). Let RegK be
the totality of regular elements, i.e., not zero divisors. Let us delete all arrows
with colour, which is a zero divisor. We will show that a new graph REn(K)
(RE(K)) with the induced colouring into colours from the alphabet Reg(K) is
vertex transitive. Really, according to [9] graph D(n,K) is an edge transitive. This
fact had been established via the description of regular on the edge set subgroup
U(n,K) of the automorphisms group Aut(G). The vertex set for the graph DEn(K)
consists of two copies F1 and F2 of the edge set for D(n,K). It means that Group
U(n,K) acts regularly on each set Fi, i = 1, 2. An explicit description of generators
for U(n,K) implicates that this group is a colour preserving group for the graph
DEn(K) with the above colouring.

If K is finite, then the cardinality of the colour set is (|K| − 1). Let RegK be
the totality of regular elements, i.e., non-zero divisors. Let us delete all arrows
with colour, which is a zero divisor. We can show that a new affine graph REn(K)
(RE(K)) with the induced colouring into colours from the alphabet Reg(K) is
vertex transitive (see [14]).

Notice, that each Ta acts naturally on the flags, it is an automorphism of
REn(K).

5. On the implementation of the public key algorithm based on
RE(t,K)

The graphs CREn(K) have the best known speed of growth of the girth indicator
evaluated in the previous section. It turns out that for the computer implementa-
tion of the public key algorithm described in the section 4 the family REn(K) of
”enveloping” for CREn(K) graphs were chosen first. It is also a family of digraphs
of large girth but the speed of the growth of girth indicator for the family is less of
those for REn(K). Graphs REn(K) were defined via the family of graphs D(n,K)
in the way described in the previous section. So, in some publications the descrip-
tion of the algorithm was done in terms of D(n,K). We introduced here a speed
evaluation of the algorithm for its latest implementation.

The set of vertices of the graph REn(K) is a union of two copies free module
Kn+1. So the Cremona group of the variety is the direct product of C(Kn+1) with
itself, expanded by polarity π. In the simplest case of a finite field Fp, where p is
a prime number C(Fp) is a symmetric group Spn+1 . The Cremona group C(Kn+1)
contains the group of all affine invertible transformations, i.e., transformation of
kind x→ xA+ b, where x = (x1, x2, . . . , xn+1) ∈ C(Kn+1), b = (b1, b2, . . . , bn+1) is
a chosen vector from C(Kn+1) andA is a matrix of a linear invertible transformation
of Kn+1.

Graph REn(K) is a bipartite directed graph. We assume that the plaintext
Kn+1 is a point (p1, p2, . . . , pn+1). We choose two affine transformations T1 and T2
and a linear transformation u will be of kind p1 → p1+a1p2+a3p3+ · · ·+an+1. We
slightly modify a general scheme, so Alice computes symbolically of chosen T1 and
T2, chooses a string (β1, β2, . . . , βl) of colours for REn(K), such that βi 6= −βi+1

for i = 1, 2, . . . , l − 1. She computes Nl = Nβ1
× Nβ2

· · · × Nβl
. Recall that Nα,
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α ∈ Reg(K) is the operator of taking the neighbour of the vertex v alongside the
arrow with the colour α in the graph REn(K). Alice chooses additionally string a.

Alice keeps chosen parameters secret and computes the public rule g as the
symbolic composition of T1, N , Ta and T2.

In case K = Fq, q = 2n this public key rule has a certain similarity to the Imai-
Matsomoto public rule, which is computed as a composition T1ET2 of two linear
transformations T1 and T2 of the vector space F2nF2s

, where F2s is a special subfield,
and E is a special Frobenius automorphism of F2n . The public rule corresponding
to T1ET2 is a quadratic polynomial map (see [3] for the detailed description of the
algorithm, its cryptoanalisis and generalisations by J. Patarin)

In the case of REn(K) the degree of transformation Nl is 3, independently on
the choice of length l [16]. So the public rule is a cubical polynomial map of the
free module Kn+1 onto itself. In case of a finite field the algorithm is equivalent to
the public rule considered in [10].

5.1. On the time evaluation for the public rule. Recall, that we combine a
graph transformation Nl with two affine transformation T1 and T2 and transforma-
tion Ta. Alice can use T1NlTaT2 for the construction of the following public map
of

y = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))

Fi(x1, . . . , xn) are polynomials of n variables written as the sums of monomials
of kind xi+1 . . . xi3 , where i1, i2, i3 ∈ 1, 2, . . . , n1 with the coefficients from K = Fq.
As we mention before the polynomial equations yi = Fi(x1, x2, . . . , xn), which are
made public, have the degree 3. Hence the process of an encryption and a decryption
can be done in polynomial time O(n4) (in one yi, i = 1, 2 . . . , n there are 2(n3− 1)
additions and multiplications). But the cryptoanalyst Cezar, having only a formula
for y, has a very hard task to solve the system of n equations of n variables of

degree 3. It is solvable in exponential time O(3n
4

) by the general algorithm based
on Gröbner basis method. Anyway studies of specific features of our polynomials
could lead to effective cryptoanalysis. This is an open problem for specialists.

We have written a program for generating a public key and for encrypting text
using the generated public key. The program is written in C++ and compiled with
the gcc compiler (version 4.4.1).

We have implemented three cases:

• T1 and T2 are identities,
• T1 and T2 are of kind x1 → x1 + a2x2 + a3x3 + · · ·+ an+1xn+1 (linear time

of computing T1 and T2),
• T1 = A1x + b1, T2 = A2x + b2; matrices A1, A2 and vectors b1, b2 has

mostly nonzero elements.

The table 1 applies to the second case. It presents the time (in milliseconds) of
the generation of the public key depending on the number of variables (n) and the
password length (p). It also presents the time of computing the transformation Ta.

The time of encryption process depends linearly on the number of monomials
(the number of nonzero coefficients) in cubic polynomials F1, F2 . . .Fn in the public
map y = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)). For n = 120 and p = 60 this number
is about 8500 in the first case, about 780000 in the second case and about 2600000
in the third case.
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Table 1. Time of public key generation (K = F232)

p = 20 p = 40 p = 60
Ta Ta Ta

n = 10 16 0 16 0 31 0
n = 20 141 16 280 0 437 0
n = 30 562 0 1217 0 1888 16
n = 40 1513 16 3464 16 5678 16
n = 50 3261 63 8346 62 13089 62
n = 60 6271 125 16239 140 26426 156
n = 70 11139 328 29032 328 47440 312
n = 80 17301 531 47315 546 79279 561
n = 90 26582 1435 72415 1560 122866 1513
n = 100 38173 2418 104053 2418 180790 2418
n = 110 53149 3557 144987 3634 251380 3572
n = 120 70169 4867 189479 3151 338258 3308

Applying the transformation Ta has the biggest impact on the time of encryption
in the first case — about 16% for n = 120 and p = 60. In the second case it is about
3.5% and in the third case it has no impact at all. The tables 2 and 3 apply to the
second case. They present the number of monomials in a public map depending
on n and p. The table 2 shows the number of monomials in a public map without
transformation Ta and the table 3 — the number of monomials in a public map
with Ta.

Table 2. Number (percentage) of nonzero coefficients (T1NT2)

p = 20 p = 40 p = 60
n = 10 435 (15.21%) 435 (15.21%) 435 (15.21%)
n = 20 3327 (9.39%) 3327 (9.39%) 3327 (9.39%)
n = 30 11795 (7.21%) 11795 (7.21%) 11795 (7.21%)
n = 40 27426 (5.56%) 27427 (5.56%) 27427 (5.56%)
n = 50 49995 (4.27%) 54855 (4.68%) 54855 (4.68%)
n = 60 77245 (3.24%) 93552 (3.93%) 93552 (3.93%)
n = 70 110395 (2.54%) 150865 (3.47%) 150865 (3.47%)
n = 80 149445 (2.03%) 222951 (3.03%) 222952 (3.03%)
n = 90 194395 (1.66%) 307015 (2.63%) 321075 (2.75%)
n = 100 245245 (1.39%) 398140 (2.25%) 436877 (2.47%)
n = 110 301995 (1.17%) 501165 (1.95%) 586735 (2.28%)
n = 120 364645 (1.00%) 616090 (1.70%) 756576 (2.08%)
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