ALBANIAN JOURNAL OF MATHEMATICS Volume 5, Number 1, Pages 11–20 ISSN 1930-1235: (2011)

FIXED POINT PROPERTY FOR THE HYPERSPACES OF NON-METRIC CHAINABLE CONTINUA

IVAN LONČAR

ABSTRACT. The main purpose of this paper is to prove that some hyperspaces of a non-metric chainable continuum have the fixed point property.

1. INTRODUCTION

All spaces in this paper are compact Hausdorff and all mappings are continuous. The weight of a space X is denoted by w(X).

A generalized arc is a Hausdorff continuum with exactly two non-separating points (end points) x, y. Each separable arc is homeomorphic to the closed interval $\mathbb{I} = [0, 1]$.

We say that a space X is *arcwise connected* if for every pair x, y of points of X there exists a generalized arc L with end points x, y.

An inverse system [3, pp. 135-142] is denoted by $\mathbf{X} = \{X_a, p_{ab}, A\}$. Suppose that we have two inverse systems $\mathbf{X} = \{X_a, p_{ab}, A\}$ and $\mathbf{Y} = \{Y_b, q_{bc}, B\}$. A morphism of the system X into the system \mathbf{Y} [1, p. 15] is a family $\{\varphi, \{f_b : b \in B\}\}$ consisting of a nondecreasing function $\varphi : B \to A$ such that $\varphi(B)$ is cofinal in A, and of maps $f_b : X_{\varphi(b)} \to Y_b$ defined for all $b \in B$ such that the following

(1.1)
$$\begin{array}{ccc} X_{\varphi(b)} & \stackrel{p_{\varphi(b)\varphi(c)}}{\longleftarrow} & X_{\varphi(c)} \\ \downarrow f_b & & \downarrow f_c \\ Y_b & \stackrel{q_{bc}}{\longleftarrow} & Y_c \end{array}$$

diagram commutes. Any morphism $\{\varphi, \{f_b : b \in B\}\}$: $\mathbf{X} \to \mathbf{Y}$ induces a map, called the *limit map of the morphism*

$$\lim\{\varphi, \{f_b : b \in B\}\} : \lim \mathbf{X} \to \lim \mathbf{Y}$$

In the present paper we deal with the inverse systems defined on the same indexing set A. In this case, the map $\varphi : A \to A$ is taken to be the identity and we use the following notation $\{f_a : X_a \to Y_a; a \in A\} : \mathbf{X} \to \mathbf{Y}$.

The following result is well-known.

Theorem 1.1. [3, Exercise 2.5.D(b), p. 143]. If for every $s \in S$ an inverse system $\mathbf{X}(s) = \{X_a(s), p_{ab}(s), A\}$ is given, then the family $\Pi\{\mathbf{X}(s) : s \in S\} = \{\Pi\{X_a(s) : s \in S\}, \Pi\{p_{ab}(s) : s \in S\}, A\}$ is an inverse system and $\lim(\Pi\{\mathbf{X}(s) : s \in S\})$ is homeomorphic to $\Pi\{\lim \mathbf{X}(s) : s \in S\}$.

©2011 Aulona Press (Albanian J. Math.)

¹⁹⁹¹ Mathematics Subject Classification. Primary 54H25, 54F15; Secondary 54B35.

Key words and phrases. Fixed point property, Hyperspaces, Chainable Continuum, Inverse system.

If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system, then we have inverse system $\mathbf{X} \times \mathbf{X} = \{X_a \times X_a, p_{ab} \times p_{ab}, A\}$. Let $X = \lim \mathbf{X}$. By Theorem 1.1 we infer that $X \times X$ is homeomorphic to the limit of inverse system $\mathbf{X} \times \mathbf{X}$.

We say that an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is factorizing [1, p. 17] if for each real-valued mapping $f : \lim \mathbf{X} \to \mathbb{R}$ there exist an $a \in A$ and a mapping $f_a : X_a \to \mathbb{R}$ such that $f = f_a p_a$.

An inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is said to be σ -directed if for each sequence $a_1, a_2, ..., a_k, ...$ of the members of A there is an $a \in A$ such that $a \ge a_k$ for each $k \in \mathbb{N}$.

Lemma 1.2. [1, Corollary 1.3.2, p. 18]. If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is a σ -directed inverse system of compact spaces with surjective bonding mappings, then it is factorizing.

An inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is said to be τ -continuous [1, p. 19] if for each chain B in A with $\operatorname{card}(B) < \tau$ and $\sup B = b$, the diagonal product $\Delta \{p_{ab} : a \in B\}$ maps the space X_b homeomorphically into the space $\lim \{X_a, p_{ab}, B\}$.

An inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is said to be τ -system [1, p. 19] if:

a) $\tau \ge w(X_a)$ for every $a \in A$,

b) The system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is τ -continuous,

c) The indexing set A is τ -complete.

If $\tau = \aleph_0$, then τ -system is called a σ -system. The following theorem is called the *Spectral Theorem* [1, p. 19].

Theorem 1.3. [1, Theorem 1.3.4, p. 19]. If a τ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ with surjective limit projections is factorizing, then each map of its limit space into the limit space of another τ -system $\mathbf{Y} = \{Y_a, q_{ab}, A\}$ is induced by a morphism of cofinal and τ -closed subsystems. If two factorizing τ -systems with surjective limit projections and the same indexing set have homeomorphic limit spaces, then they contain isomorphic cofinal and τ -closed subsystems.

Let us remark that the requirement of surjectivity of limit projections of systems in Theorem 1.3 is essential [1, p. 21].

In the sequel we will need the following theorem.

Theorem 1.4. [7, Theorem 1.6, p. 402]. If X is the Cartesian product $X = \prod\{X_s : s \in S\}$, where card(S) $> \aleph_0$ and each X_s is compact, then there exists a σ -directed inverse system $\mathbf{X} = \{Y_a, P_{ab}, A\}$ of the countable products $Y_a = \prod\{X_\mu : \mu \in a\}$, card(a) $= \aleph_0$, such that X is homeomorphic to $\lim \mathbf{X}$.

2. Fixed point property for non-metric compact spaces

A fixed point of a function $f : X \to X$ is a point $p \in X$ such that f(p) = p. A space X is said to have the fixed point property provided that every surjective mapping $f : X \to X$ has a fixed point.

First Step in the proving fixed point property for hyperspaces of non-metric chainable continua is the following general Theorem for fixed point property for non-metric continua.

Theorem 2.1. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -system of compact spaces with the limit X and onto projections $p_a : X \to X_a$. Let $\{f_a : X_a \to X_a\} : \mathbf{X} \to \mathbf{X}$ be a morphism. Then the induced mapping $f = \lim \{f_a\} : X \to X$ has a fixed point if and only if each mapping $f_a : X_a \to X_a$, $a \in A$, has a fixed point.

12

Proof. The if part. Let $F_a, a \in A$, be a set of fixed points of the mapping f_a .

Claim 1. Every set F_a is closed. This is a consequence of the following theorem [3, Theorem 1.5.4., p. 59]. For any pair f,g of mappings of a space X into a Hausdorff space Y, the set

$$\{x \in X : f(x) = g(x)\}$$

is closed in X.

It suffices to set g(x) = x and Y = X.

Claim 2. If $b \ge a$, then $p_{ab}(F_b) \subset F_a$. Let x_b be any point of F_b . From the commutativity of the diagram (1.1) it follows $p_{ab}(f_b(x)) = f_a(p_{ab}(x))$. We have $p_{ab}(x) = f_a(p_{ab}(x))$ since $f_b(x) = x$. This mens that for the point $y = p_{ab}(x) \in X_a$ we have $y = f_a(y)$, i.e., $y \in F_a$. We infer that $p_{ab}(x) \in F_a$ and $p_{ab}(F_b) \subset F_a$.

Claim 3. $\mathbf{F} = \{F_a, p_{ab} | F_b, A\}$ is an inverse system of compact spaces with the non-empty limit F.

Claim 4. The set $F \subset X$ is the set of fixed points of the mapping f. Let $x \in F$ and let $x_a = p_a(x), a \in A$. Now, $f_a(x_a) = x_a$ since $x_a \in F_a$. We infer that f(x) = x since the morphism $\{f_a : a \in A\}$ induces f. The proof of the "if" part is complete.

The only if part. Suppose that the induced mapping f has a fixed point x. Let us prove that every mapping $f_a, a \in A$, has a fixed point. Now we have $f_a p_a(x) = p_a f(x)$. From f(x) = (x) it follows $f_a p_a(x) = p_a(x)$. We infer that $p_a(x)$ is a fixed point for f_a .

As an immediate consequence of this theorem and the Spectral theorem 1.3 we have the following result.

Theorem 2.2. Let a non-metric continuum X be the inverse limit of an inverse σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a has the fixed point property and each bonding mapping p_{ab} is onto. Then X has the fixed point property.

The following result is an application of Theorem 2.2.

Theorem 2.3. Let S be an infinite set and $Q = \Pi\{X_s : s \in S\}$ Cartesian product of compact spaces. If each product $X_{s_1} \times X_{s_2} \times ... \times X_{s_n}$ of finitely many spaces X_s has the fixed point property, then Q has the fixed point property.

Proof. We shall consider the following cases.

Case 1. $\operatorname{card}(S) = \aleph_0$. We may assume that $S = \mathbb{N}$. The proof is a straightforward modification of the proof of [9, Corollary 3.5.3, pp. 106-107]. Let $f : Q \to Q$ be continuous. For every $n \in \mathbb{N}$ define

$$K_n = \{ x \in Q : (x_1, ..., x_n) = (f(x)_1, ..., f(x)_n) \}.$$

It is clear that for every n the set K_n is closed in Q and that $K_{n+1} \subset K_n$. For every $n \in \mathbb{N}$, let o_n be a given point of X_n and $p_n : Q \to X_1 \times \ldots \times X_n$ be the projection. Define continuous function $f_n : X_1 \times \ldots \times X_n \to X_1 \times \ldots \times X_n$ by

$$f_n(x_1, ..., x_n) = (p_n f)(x_1, ..., x_n, o_{n+1}, o_{n+2}, ...).$$

By assumption of Theorem f_n has the fixed point property, say $(x_1, ..., x_n)$. It follows that

 $(x_1, \dots, x_n, o_{n+1}, o_{n+2}, \dots) \in K_n.$

We conclude that $\{K_n : n \in \mathbb{N}\}$ is a decreasing collection of nonempty closed subsets of Q. By compactness of Q we have that

$$K = \cap \{K_n : n \in \mathbb{N}\}$$

IVAN LONČAR

is nonempty. It is clear that every point in K is a fixed point of f.

Case 2.card $(A) \ge \aleph_1$. By Theorem 1.4 there exists a σ -directed inverse system $\mathbf{X} = \{Y_a, P_{ab}, A\}$ of the countable products $Y_a = \prod\{X_\mu : \mu \in a\}$, card $(a) = \aleph_0$, such that Q is homeomorphic to $\lim \mathbf{X}$. By Case 1 each Y_a has the fixed point property. Finally, by Theorem 2.2 we infer that Q has the fixed point property. \Box

3. Fixed point property for the hyperspaces of non-metric chainable continua

In this Section we shall study the fixed point property of the hyperspaces of chainable continua.

A chain $\{U_1, ..., U_n\}$ is a finite collection of sets U_i such that $U_i \cap U_j \neq \emptyset$ if and only if $|i - j| \leq 1$. A continuum X is said to be chainable or arc-like if each open covering of X can be refined by an open covering $u = \{U_1, ..., U_n\}$ such that $\{U_1, ..., U_n\}$ is a chain.

Second Step in the proving fixed point property for hyperspaces of non-metric chainable continua is the following general expanding Theorem for non-metric chainable continua into inverse σ -system.

Theorem 3.1. If X is a chainable continuum, then there exists a σ -system $\mathbf{Q}_{\sigma} = \{Q_{\Delta}, p_{\Delta\Gamma}, A_{\sigma}\}$ such that each Q_{Δ} is a metric chainable continuum, $p_{\Delta\Gamma}$ are surjections and X is homeomorphic with the inverse limit $\lim \mathbf{Q}_{\sigma}$.

Proof. The proof is broken into several steps.

Step 1. If X is a chainable continuum, then there exists a system $\mathbf{Q} = \{Q_a, q_{ab}, A\}$ such that each Q_a is a metric chainable continuum and X is homeomorphic with the inverse limit lim \mathbf{Q} . By [8, Theorem 2^{*}] every chainable continuum X is homeomorphic with the inverse limit of an inverse system $\{Q_a, q_{ab}, A\}$ of metric chainable continuu Q_a . One can assume that q_{ab} are onto mappings since a closed connected subset C of chainable continuum is chainable.

Step 2. There exists a σ -system of chainable continua such that X is homeomorphic with its inverse limit. The inverse system $\{Q_a, q_{ab}, A\}$ is not a σ -system. Now we shall prove that such inverse system exists. For each subset Δ_0 of (A, \leq) we define sets Δ_n , n = 0, 1, ..., by the inductive rule $\Delta_{n+1} = \Delta_n \bigcup \{m(x, y) : x, y \in \Delta_n\}$, where m(x, y) is a member of A such that $x, y \leq m(x, y)$. Let $\Delta = \bigcup \{\Delta_n : n \in \mathbb{N}\}$. It is clear that $\operatorname{card}(\Delta) = \operatorname{card}(\Delta_0)$. Moreover, Δ is directed by \leq . For each directed set (A, \leq) we define

$$A_{\sigma} = \{ \Delta : \emptyset \neq \Delta \subset A, \operatorname{card}(\Delta) \leq \aleph_0 \quad \text{and } \Delta \text{ is directed by } \leq \}.$$

Let us prove that A_{σ} is σ -directed and σ -complete. Let $\{\Delta^1, \Delta^2, ..., \Delta^n, ...\}$ be a countable subset of $A_{\sigma} = \{\Delta : \emptyset \neq \Delta \subset A, \operatorname{card}(\Delta) \leq \aleph_0 \text{ and } \Delta \text{ is directed by } \leq \}$. Then $\Delta_0 = \cup \{\Delta^1, \Delta^2, ..., \Delta^n, ...\}$ is a countable subset of A_{σ} . Define sets Δ_n , n = 0, 1, ..., by the inductive rule $\Delta_{n+1} = \Delta_n \bigcup \{m(x, y) : x, y \in \Delta_n\}$, where m(x, y) is a member of A such that $x, y \leq m(x, y)$. Let $\Delta = \bigcup \{\Delta_n : n \in \mathbb{N}\}$. It is clear that $\operatorname{card}(\Delta) = \operatorname{card}(\Delta_0)$. This means that Δ is countable. Moreover $\Delta \supseteq \Delta^i, i \in \mathbb{N}$. Hence A_{σ} is σ -directed. Let us prove that A_{σ} is σ -complete. Let $\Delta^1 \subset \Delta^2 \subset ... \subset \Delta^n \subset ...$ be a countable chain in A_{σ} . Then $\Delta = \cup \{\Delta^i : i \in \mathbb{N}\}$ is countable and directed subset of A, i.e., $\Delta \in A_{\sigma}$. It is clear that $\Delta \supseteq \Delta^i, i \in \mathbb{N}$. Moreover, for each $\Gamma \in A_{\sigma}$ with property $\Gamma \supseteq \Delta^i, i \in \mathbb{N}$, we have $\Gamma \supseteq \Delta$. Hence $\Delta = \sup \{\Delta^i : i \in \mathbb{N}\}$. This means that A_{σ} is σ -complete.

14

If $\Delta \in A_{\sigma}$, let $\mathbf{Q}^{\Delta} = \{Q_b, q_{bb'}, \Delta\}$ and $Q_{\Delta} = \lim \mathbf{Q}^{\Delta}$. If $\Delta, \Gamma \in A_{\sigma}$ and $\Delta \subseteq \Gamma$, let $p_{\Delta\Gamma}: Q_{\Gamma} \to Q_{\Delta}$ denote the map induced by the projections $q_{\delta}^{\Gamma}: Q_{\Gamma} \to Q_{\delta}, \delta \in \Delta$, of the inverse system \mathbf{Q}^{Γ} .

Now we shall prove that if $\mathbf{Q} = \{Q_a, q_{ab}, A\}$ is an inverse system, then $\mathbf{Q}_{\sigma} = \{Q_{\Delta}, p_{\Delta\Gamma}, A_{\sigma}\}$ is a σ -directed and σ -complete inverse system such that $\lim \mathbf{Q}$ and $\lim \mathbf{Q}_{\sigma}$ are homeomorphic. Each thread $x = (x_a : a \in A)$ induces the thread $(x_a : a \in \Delta)$ for each $\Delta \in A_{\sigma}$, i.e., the point $q_{\Delta} \in Q_{\Delta}$. This means that we have a mapping $H : \lim \mathbf{Q} \to \lim \mathbf{Q}_{\sigma}$ such that $H(x) = (q_{\Delta} : \Delta \in A_{\sigma})$. It is obvious that H is continuous and 1-1. The mapping H is onto since the collections of the threads $\{q_{\Delta} : \Delta \in A_{\sigma}\}$ induces the thread in \mathbf{Q} . We infer that H is a homeomorphism since $\lim \mathbf{Q}$ is compact.

Finally, let us prove that every Q_{Δ} is chainable. We may assume that $\mathbf{Q}^{\Delta} = \{Q_b, q_{bb'}, \Delta\}$ is an inverse sequence since Δ is countable and $Q_{\Delta} = \lim \mathbf{Q}^{\Delta}$. Let $u = \{U_1, ..., U_n\}$ be an open covering of Q_{Δ} . There exists a $b \in \Delta$ and an open covering $u_b = \{U_1^b, ..., U_m^b\}$ of Q_b such that $\{q_b^{-1}(U_1^b), ..., q_b^{-1}(U_m^b)\}$ refines the covering $u = \{U_1, ..., U_n\}$. There is a chain $\{V_1^b, ..., V_p^b\}$ which refines u_b since Q_b is chainable. It is clear that $\{q_b^{-1}(V_1^b), ..., q_b^{-1}(V_p^b)\}$ is a chain which refines the covering u. Hence, Q_{Δ} is chainable.

Step 3. One can assume that $p_{\Delta\Gamma}$ and $p_{\Delta} : \lim Q_{\sigma} \to Q_{\Delta}$ are onto mappings. If $p_{\Delta\Gamma}$ and $p_{\Delta} : \lim Q_{\sigma} \to Q_{\Delta}$ are not onto mappings, then we shall use the inverse system $\mathbf{Q}_{\sigma}^{p} = \{p_{\Delta}(\lim Q_{\sigma}), p_{\Delta\Gamma} | p_{\Delta}(\lim Q_{\sigma}), A_{\sigma}\}$. Each $p_{\Delta\Gamma} | p_{\Delta}(\lim Q_{\sigma})$ is chainable since a closed connected subset of chainable continuum is chainable.

The proof is completed since X is representable as the inverse limit of σ -system $\mathbf{Q}_{\sigma} = \{Q_{\Delta}, p_{\Delta\Gamma}, A_{\sigma}\}$ of metric chainable continua Q_{Δ} .

Finally, we represent the various hyperspaces of a non-metric chainable continuum X as the inverse limits of hyperspaces of metric chainable continua.

Let X be a space. We define its hyperspaces as the following sets:

 $2^{X} = \{F \subseteq X : F \text{ is closed and nonempty}\},\$ $\mathcal{C}(X) = \{F \in 2^{X} : F \text{ is connected}\},\$ $\mathcal{F}_{n}(X) = \{A \subset X : A \text{ is nonempty and } A \text{ has at most } n \text{ points}\}.$

For any finitely many subsets $S_1, ..., S_n$, let

$$\langle S_1, ..., S_n \rangle = \left\{ F \in 2^X : F \subset \bigcup_{i=1}^n S_i, \text{ and } F \cap S_i \neq \emptyset, \text{ for each } i \right\}.$$

The topology on 2^X is the Vietoris topology, i.e., the topology with a base $\{\langle U_1, ..., U_n \rangle : U_i \text{ is an open subset of } X \text{ for each } i \text{ and each } n < \infty \}$, and C(X), X(n) are subspaces of 2^X . Moreover, X(1) is homeomorphic to X.

The topology on 2^X is the Vietoris topology and $\mathcal{C}(X)$ and $\mathcal{F}_n(X)$ is a subspaces of 2^X .

Let X and Y be the spaces and let $f: X \to Y$ be a mapping. Define $2^f: 2^X \to 2^Y$ by $2^f(F) = f(F)$ for $F \in 2^X$. It is known that 2^f is continuous and $2^f(\mathcal{C}(X)) \subset \mathcal{C}(Y)$. Moreover, $2^f(\mathcal{F}_n(X)) \subset \mathcal{F}_n(Y)$. The restriction $2^f|\mathcal{C}(X)$ is denoted by $\mathcal{C}(f)$. Similarly, the restriction $2^f|\mathcal{F}_n(X)$ is denoted by $\mathcal{F}_n(f)$.

Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of compact spaces with the natural projections p_a : $\lim X \to X_a$, $a \in A$. Then $2^{\mathbf{X}} = \{2^{X_a}, 2^{p_{ab}}, A\}$, $\mathcal{C}(\mathbf{X}) = \{\mathcal{C}(X_a), \mathcal{C}(p_{ab}), A\}$ and $\mathcal{F}_n(\mathbf{X}) = \{\mathcal{F}_n(X_a), \mathcal{F}_n(p_{ab}), A\}$ form inverse systems.

Lemma 3.2. Let $X = \lim \mathbf{X}$. Then $2^X = \lim 2^{\mathbf{X}}$, $\mathcal{C}(X) = \lim \mathcal{C}(\mathbf{X})$ and $\mathcal{F}_n(X) = \lim \mathcal{F}_n(\mathbf{X})$.

In [6, Corollary 5, p. 616] it is proved the following result.

Theorem 3.3. The third symmetric product $\mathcal{F}_3(X)$ of a metric chainable continuum X has the fixed point property.

The proof given there is purely metric. This means that it is reasonable to give the proof for non-metric chainable continua.

Theorem 3.4. The third symmetric product $\mathcal{F}_3(X)$ of a chainable continuum X (metric or non-metric) has the fixed point property.

Proof. If X is a metric chainable continuum, then apply Theorem 3.3. In order to complete the proof, we shall assume that X is non-metric chainable continuum. By Theorem 3.1 there exists a σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is a metric chainable continuum, p_{ab} are surjections and X is homeomorphic with the inverse limit lim \mathbf{X} . Now we have a σ -system $\mathcal{F}_3(\mathbf{X}) = \{\mathcal{F}_3(X_a), \mathcal{F}_3(p_{ab}), A\}$ whose limit is homeomorphic to $\mathcal{F}_3(X)$. In order to apply Theorem 2.2 it suffices to prove that $\mathcal{F}_3(p_{ab})$ are surjections for every $a \leq b$. Let $\{x_1, x_2, x_3\} \in \mathcal{F}_3(X_a)$. The sets $p_{ab}^{-1}(x_1), p_{ab}^{-1}(x_2), p_{ab}^{-1}(x_3)$ are non-empty since p_{ab} is onto. If $y_1 \in p_{ab}^{-1}(x_1), y_2 \in p_{ab}^{-1}(x_2)$ and $y_3 \in p_{ab}^{-1}(x_3)$, then $\{y_1, y_2, y_3\} \in \mathcal{F}_3(X_b)$ and $\mathcal{F}_3(p_{ab})(\{y_1, y_2, y_3\}) = \{x_1, x_2, x_3\} \in \mathcal{F}_3(X_a)$. Hence, $\mathcal{F}_3(p_{ab})$ is a surjection. By Theorem 3.3 each X_a has the fixed point property.

From the proof of the above theorem it is clear that is true the following theorem.

Theorem 3.5. The nth-symmetric product $\mathcal{F}_n(X)$ of a chainable non-metric continuum X has the fixed point property if the nth-symmetric product of every chainable metric continuum has the fixed point property.

From this theorem we shall give the following result.

Theorem 3.6. If X is a non-metric chainable continuum, then X has the fixed point property.

Proof. Now X is homeomorphic to $\mathcal{F}_1(X)$ which is homeomorphic to $\lim \mathcal{F}_1(\mathbf{X})$. From Theorem 3.5 it follows that $\lim \mathcal{F}_1(\mathbf{X})$ has the fixed point property since each metric chainable continuum $\mathcal{F}_1(Y)$ (homeomorphic to Y) has the fixed point property [4].

Another hyperspace of a continuum is the hyperspace $C(X) = \{F \in 2^X : F \text{ is connected}\}$. The following result is known.

Theorem 3.7. [11]. If Y is a metric chainable continuum, then C(Y) has the fixed point property.

For non-metric chainable continua we have the following result.

Theorem 3.8. If X is a non-metric chainable continuum, then C(X) has the fixed point property.

16

Proof. If X is a metric chainable continuum, then apply Theorem 3.7. In order to complete the proof, we shall assume that X is non-metric chainable continuum. By Theorem 3.1 there exists a σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is a metric chainable continuum, p_{ab} are surjections and X is homeomorphic with the inverse limit lim \mathbf{X} . Now we have a σ -system $\mathcal{C}(\mathbf{X}) = \{\mathcal{C}(X_a), \mathcal{C}(p_{ab}), A\}$ whose limit is homeomorphic to $\mathcal{C}(X)$. In order to apply Theorem 2.2 it suffices to prove that $\mathcal{C}(p_{ab})$ are surjections for every $a \leq b$. Let $C \in \mathcal{C}(X_a)$. The set $p_{ab}^{-1}(C)$ contains a continuum D in Y such that $p_{ab}(D) = C$ ([10, Theorem 12.46, p. 262]). Hence, $\mathcal{C}(p_{ab})$ is a surjection. By Theorem 3.7 each X_a has the fixed point property. Finally, by Theorem 2.2 we infer that $\mathcal{C}(X)$ has the fixed point property.

4. FIXED POINT PROPERTY OF THE PRODUCT OF CHAINABLE CONTINUA

Dyer [2, Theorem 1, p. 663] showed the following result.

Theorem 4.1. Suppose that M is the Cartesian product of n compact chainable metric continua $X_1, X_2, ..., X_n$ and f is a continuous mapping of M into itself. Then there is a point $x \in M$ such that x = f(x).

For n = 2 we have the following result.

Theorem 4.2. [5, p. 199, Exercise 22.26]. If X and Y are metric chainable continua, then $X \times Y$ has the fixed point property.

Dyer [2, Corollary, p.665] showed the following general result.

Theorem 4.3. Cartesian product of the elements of any collection of chainable metric continua has the fixed point property.

We will show that last Theorem 4.3 is true for non-metrizable chainable continua.

Theorem 4.4. Cartesian product of the elements of any collection of chainable continua of the same weight has the fixed point property.

Proof. If for every $s \in S$ we have a chainable non-metrizable continuum X(s), then, for every $s \in S$, there exists an inverse system $\mathbf{X}(s) = \{X_a(s), p_{ab}(s), A(s)\}$ such that X(s) is homeomorphic to $\lim \mathbf{X}(s)$ and every $X_a(s)$ is a metric chainable continuum (Theorem 3.1). If $w(X(s_1)) = w(X(s_2)), s_1, s_2 \in S$, then $A(s_1) = A(s_2)$ and we may suppose that A(s) = A for every $s \in S$. By Theorem 1.1 the family $\Pi\{\mathbf{X}(s) : s \in S\} = \{\Pi\{X_a(s) : s \in S\}, \Pi\{p_{ab}(s) : s \in S\}, A\}$ is an inverse system and $\lim(\Pi\{\mathbf{X}(s) : s \in S\})$ is homeomorphic to $\Pi\{\lim \mathbf{X}(s) : s \in S\}$. From Theorem 4.3 it follows that each $\Pi\{X_a(s) : s \in S\}$ has the fixed point property. Finally, from Theorem 2.2 it follows that $\Pi\{X(s) : s \in S\}$ has the fixed point property. □

QUESTION. Is it true that the assumption "of the same weight" in Theorem 4.4 can be omitted?

As an immediate application of Theorem 4.4 we give the following generalization of Brouwer Fixed-Point Theorem. Let L be a non-metric arc. The space X is said to be a generalized *n*-cell if it is homeomorphic to $L^n = L \times L \times ... \times L$ (*n* factors).

Theorem 4.5. Every mapping $f : L^n \to L^n$ has a fixed point, i.e., L^n has the fixed point property.

Theorem 4.5 implies the following result.

Theorem 4.6. If $L_1, ..., L_n$ are arcs (metric or non-metric), then $L_1 \times L_2 \times ... \times L_n$ has the fixed point property.

Proof. Step 1. If M is a subarc of the arc L, then there exists a retraction $r : L \to M$. Let a, b, c, d be end points of L and M such that $a \le c < d \le b$. We define $r : L \to M$ as follows:

$$r(x) = \begin{cases} c & \text{if } a \le x \le c, \\ x & \text{if } c \le x \le d, \\ d & \text{if } d \le x \le b. \end{cases}$$

Step 2. If $L_1, L_2, ..., L_n$ is a finite collection of arcs, then there an arc L such that $L_1, L_2, ..., L_n$ are subarc of L. For each $i \in \{1, 2, ..., n\}$ let a_i, b_i be a pair of end points of L_i such that $a_i < b_i$. If we identify the pair of points $\{b_1, a_2\}, \{b_2, a_3\}, ..., \{b_{n-1}, a_n\}$ we obtain an arc L such that $L_i \subset L$ for each $i \in \{1, 2, ..., n\}$.

Step 3. $L_1 \times L_2 \times \ldots \times L_n$ is a retract of L^n . Let L and L_1, L_2, \ldots, L_n be as in Step 2. Let $r_i : L \to L_i, i \in \{1, 2, \ldots, n\}$ be a retraction defined in Step 1. Let us prove that $r = r_1 \times r_2 \times \ldots \times r_n$ is a retraction of L^n onto L_1, L_2, \ldots, L_n . If $(y_1, y_2, \ldots, y_n) \in L^n$, then we have: $r_1 \times r_2 \times \ldots \times r_n(y_1, y_2, \ldots, y_n) = (r_1(y_1), r_2(y_2), \ldots, r_n(y_n)) \in L_1 \times L_2 \times \ldots \times L_n$ since $r_i(y_i) \in L_i$. If $(x_1, x_2, \ldots, x_n) \in L_1 \times L_2 \times \ldots \times L_n$, then $r_1 \times r_2 \times \ldots \times r_n(x_1, x_2, \ldots, x_n) = (r_1(x_1), r_2(x_2), \ldots, r_n(x_n)) = (x_1, x_2, \ldots, x_n) \in L_1 \times L_2 \times \ldots \times L_n$, then

Step 4. The product $L_1 \times L_2 \times ... \times L_n$ has the fixed point property since it is retract of the product L^n which has the fixed point property (Theorem 4.5). The proof is completed.

Theorem 4.7. If $L = \prod\{L_s : s \in S\}$ is a Cartesian product of arcs L_s , then L has the fixed point property.

Proof. Apply Theorems 4.6 and 2.3.

For Cartesian product of two chainable continua the assumption concerning the weight in Theorem 4.4 can be omitted.

Theorem 4.8. If X and Y are non-metrizable chainable continua, then $X \times Y$ has the fixed point property.

Proof. First we shall prove that if X is any chainable continuum and if Y is a metric chainable continuum, then $X \times Y$ has the fixed point property. By Theorem 3.1 there exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is a metric chainable continuum and X is homeomorphic to $\lim \mathbf{X}$. It is clear that $\mathbf{X} \times Y = \{X_a \times Y, p_{ab} \times id, A\}$ is a σ -directed inverse system whose limit is homeomorphic to $X \times Y$. Every $X_a \times Y$ has the fixed point property since it is the product of metric chainable continua (Theorem 4.2). Applying Theorem 2.2 we infer that $X \times Y$ has the fixed point property.

Suppose now that X and Y are non-metric chainable continua. Using again Theorem 3.1 we obtain a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is a metric chainable continuum and X is homeomorphic to $\lim \mathbf{X}$. It is clear that $\mathbf{X} \times Y = \{X_a \times Y, p_{ab} \times id, A\}$ is a σ -representation of $X \times Y$. From the first part of this proof it follows that every $X_a \times Y$ has the fixed point property since it is the product of metric chainable continuum X_a and an chainable continuum Y. Applying Theorem 2.2 we infer that $X \times Y$ has the fixed point property. \Box

We close this section with the fixed point property for multifunctions on chainable continua.

A multifunction, $F : X \to Y$, from a space X to a space Y is a point-toset correspondence such that, for each $x \in X$, F(x) is a subset of Y. For any $y \in Y$, we write $F^{-1}(y) = \{x \in X : y \in F(x)\}$. If $A \subset X$ and $B \subset Y$, then $F(A) = \bigcup \{F(x) : x \in A\}$ and $F^{-1}(B) = \bigcup \{F^{-1}(y) : y \in B\}$.

A multifunction $F: X \to Y$ is said to be *continuous* if and only if: (i) F(x) is closed for each $x \in X$, (ii) $F^{-1}(B)$ is closed for each closed set B in Y, (iii) $F^{-1}(V)$ is open for each open set V in Y.

A topological space X is said to have F.p.p (fixed point property for multivalued functions) if for every multi-valued continuous function $F: X \to X$ there exists a point $x \in X$ such that $x \in F(x)$. It follows that X has F.p.p if for every single-valued continuous function $F: X \to 2^X$ there exists a point $x \in X$ such that $x \in F(x)$.

Theorem 4.9. [12]. If X is any metric chainable continuum, then X has the F.p.p.

Now we shall prove the following result.

Theorem 4.10. Each chainable continuum X has the F.p.p.

Proof. If an chainable continuum is metrizable, then it has F.p.p (Theorem 4.9). Suppose that chainable continuum X is non-metrizable. By virtue of Theorem 3.1 there exists a σ -system $\mathbf{X}_{\sigma} = \{X_{\Delta}, P_{\Delta\Gamma}, A_{\sigma}\}$ of metric chainable continua X_{Δ} and onto mappings $P_{\Delta\Gamma}$ such that X is homeomorphic to $\lim \mathbf{X}_{\sigma}$. Moreover, we have the inverse system $2^{\mathbf{X}} = \{2^{X_a}, 2^{p_{ab}}, A\}$ whose limit is 2^X . Let $F: X \to 2^X$ be a continuous mapping. From Theorem 1.3 it follows that there exists a subset Bcofinal in A such that for every $b \in B$ there exists a continuous mapping $F_b : X_b \to$ 2^{X_b} with the property that $\{F_b : b \in B\}$ is a morphism which induce F. Theorem 4.9 implies that the set $Y_b \subset X_b, b \in B$, of fixed points of F_b is non-empty. Let us prove that Y_b is a closed subset of X_b . We shall prove that $U_b = X_b \setminus Y_b$ is open. Let $x_b \in U_b$. This means that x_b and $F_b(x_b)$ are disjoint closed subset of X_b . By the normality of X_b there exists a pair of open sets U, V such that $x \in U$ and $Y_b \subset V$. From the continuity of F_b it follows that there exists an open set $W \subset U$ such that for every $x \in W$ we have $f(x) \subset V$. Hence, U_b is open and, consequently, Y_b is closed. Now, we shall prove that the collection $\{Y_b, p_{bc} | Y_c, B\}$ is an inverse system. To do this we have to prove that if c > b, then $p_{bc}(Y_c) \subset Y_b$. Let x_c be a point of Y_c . This means that $x_c \in f_c(x_c)$. Hence, $p_{bc}(x_c) \in p_{bc}(F_c(x_c)) = F_b p_{bc}(x_c)$. We conclude that the point $x_b = p_{bc}(x_c)$ has the property $x_b \in f_b(x_b)$, i.e., $x_b =$ $p_{bc}(x_c) \in Y_b$. Finally, $p_{bc}(Y_c) \subset Y_b$. and $\{Y_b, p_{bc}|Y_c, B\}$ is an inverse system with non-empty limit. Let $Y = \lim \{Y_b, p_{bc} | Y_c, B\}$. In order to complete the proof we shall prove that for every $x \in Y$ we have $x \in F(x)$. Now we have $p_b(x) \in Y_b$, i.e., $p_b(x) \in F_b(p_b(x)) = p_b F(x)$, for every $b \in B$. It follows that $x \in F(x)$ since $x \notin F(x)$ implies that there is a $b \in B$ such that $p_b(x) \notin p_b F(x)$. We conclude that F has the fixed point property. \square

IVAN LONČAR

References

- [1] A. Chigogidze, Inverse spectra, Elsevier, 1996.
- [2] E. Dyer, A fixed point theorem, Proc. Am. Math. Soc. 7 (1956), 662-672.
- [3] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [4] O.H. Hamilton, A fixed point theorem for pseudo-arcs and certain other metric continua, Proc. Amer. Math. Soc. 2(1951), 173-174.
- [5] A. Illanes and S. B. Nadler, J., Hyperspaces : Fundamentals and Recent Advances, Marcel Dekker, Inc., New York and Basel, 1999.
- [6] A. Illanes, Fixed point property on symmetric products of chainable continua, Comment. Math. Univ. Carolin. 50 (2009), 615–628.
- [7] I. Lončar, A fan X admits a Whitney map for C(X) iff it is metrizable, Glas. Mat. Ser. III 38 (58) (2003), 395 411.
- [8] S. Mardešić, Chainable continua and inverse limits, Glas. Mat. Fiz. i Astr. 14 (1959), 219-232.
- [9] J. van Mill, Infinite-Dimensional Topology, Elsevier Sci. Pub. 1989.
- [10] S. B. Nadler, Jr., Continuum theory, Marcel Dekker, New York, 1992.
- [11] J. Segal, A fixed point theorem for the hyperspaces of snake-like continuum, Fund. Math. 50 (1962), 237-248.
- [12] L.E. Ward, Mobs, Trees, and Fixed Points, Proc. Amer. Math. Soc. 8 (1957), 798-804.

FACULTY OF ORGANIZATIONS AND INFORMATICS VARAŽDIN, CROATIA *E-mail address*: iloncar@tele2.hr or ivan.loncar@foi.hr