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FIXED POINT PROPERTY FOR THE HYPERSPACES OF

NON-METRIC CHAINABLE CONTINUA

IVAN LONČAR

Abstract. The main purpose of this paper is to prove that some hyperspaces

of a non-metric chainable continuum have the fixed point property.

1. Introduction

All spaces in this paper are compact Hausdorff and all mappings are continuous.
The weight of a space X is denoted by w(X).

A generalized arc is a Hausdorff continuum with exactly two non-separating
points (end points) x, y. Each separable arc is homeomorphic to the closed interval
I = [0, 1].

We say that a space X is arcwise connected if for every pair x, y of points of X
there exists a generalized arc L with end points x, y.

An inverse system [3, pp. 135-142] is denoted by X = {Xa, pab, A}. Suppose
that we have two inverse systems X = {Xa, pab, A} and Y = {Yb, qbc, B}. A
morphism of the system X into the system Y [1, p. 15] is a family {ϕ, {fb : b ∈ B}}
consisting of a nondecreasing function ϕ : B → A such that ϕ(B) is cofinal in A,
and of maps fb : Xϕ(b) → Yb defined for all b ∈ B such that the following

(1.1)
Xϕ(b)

pϕ(b)ϕ(c)←− Xϕ(c)

↓ fb ↓ fc
Yb

qbc←− Yc

diagram commutes. Any morphism {ϕ, {fb : b ∈ B}} : X → Y induces a map,
called the limit map of the morphism

lim{ϕ, {fb : b ∈ B}} : limX→ limY

In the present paper we deal with the inverse systems defined on the same in-
dexing set A. In this case, the map ϕ : A → A is taken to be the identity and we
use the following notation {fa : Xa → Ya; a ∈ A} : X→ Y.

The following result is well-known.

Theorem 1.1. [3, Exercise 2.5.D(b), p. 143]. If for every s ∈ S an inverse system
X(s) = {Xa(s), pab(s), A} is given, then the family Π{X(s) : s ∈ S} = {Π{Xa(s) :
s ∈ S},Π{ pab(s) : s ∈ S}, A} is an inverse system and lim(Π{X(s) : s ∈ S}) is
homeomorphic to Π{limX(s) : s ∈ S}.
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If X = {Xa, pab, A} is an inverse system, then we have inverse system X×X =
{Xa ×Xa, pab × pab, A}. Let X = limX. By Theorem 1.1 we infer that X ×X is
homeomorphic to the limit of inverse system X×X.

We say that an inverse system X = {Xa, pab, A} is factorizing [1, p. 17] if for
each real-valued mapping f : limX→ R there exist an a ∈ A and a mapping
fa : Xa → R such that f = fapa.

An inverse system X = {Xa, pab, A} is said to be σ-directed if for each sequence
a1, a2, ..., ak, ... of the members of A there is an a ∈ A such that a ≥ ak for each k
∈ N.

Lemma 1.2. [1, Corollary 1.3.2, p. 18]. If X = {Xa, pab, A} is a σ-directed inverse
system of compact spaces with surjective bonding mappings, then it is factorizing.

An inverse system X = {Xa, pab, A} is said to be τ -continuous [1, p. 19]
if for each chain B in A with card(B) < τ and supB = b, the diagonal product
∆ {pab : a ∈ B}maps the spaceXb homeomorphically into the space lim{Xa, pab, B}.

An inverse system X = {Xa, pab, A} is said to be τ -system [1, p. 19] if:
a) τ ≥ w(Xa) for every a ∈ A,
b) The system X = {Xa, pab, A} is τ -continuous,
c) The indexing set A is τ -complete.
If τ = ℵ0, then τ -system is called a σ-system. The following theorem is called

the Spectral Theorem [1, p. 19].

Theorem 1.3. [1, Theorem 1.3.4, p. 19]. If a τ -system X = {Xa, pab, A} with
surjective limit projections is factorizing, then each map of its limit space into the
limit space of another τ -system Y = {Ya, qab, A} is induced by a morphism of
cofinal and τ -closed subsystems. If two factorizing τ -systems with surjective limit
projections and the same indexing set have homeomorphic limit spaces, then they
contain isomorphic cofinal and τ -closed subsystems.

Let us remark that the requirement of surjectivity of limit projections of systems
in Theorem 1.3 is essential [1, p. 21].

In the sequel we will need the following theorem.

Theorem 1.4. [7, Theorem 1.6, p. 402]. If X is the Cartesian product X =∏
{Xs : s ∈ S}, where card(S) > ℵ0 and each Xs is compact, then there exists a

σ-directed inverse system X = {Ya, Pab, A} of the countable products Ya =
∏
{Xµ :

µ ∈ a}, card(a) = ℵ0, such that X is homeomorphic to limX.

2. Fixed point property for non-metric compact spaces

A fixed point of a function f : X → X is a point p ∈ X such that f(p) = p.
A space X is said to have the fixed point property provided that every surjective
mapping f : X → X has a fixed point.

First Step in the proving fixed point property for hyperspaces of non-metric
chainable continua is the following general Theorem for fixed point property for
non-metric continua.

Theorem 2.1. Let X = {Xa, pab, A} be a σ-system of compact spaces with the
limit X and onto projections pa : X → Xa. Let {fa : Xa → Xa} : X → X be a
morphism. Then the induced mapping f = lim {fa} : X → X has a fixed point if
and only if each mapping fa : Xa → Xa, a ∈ A, has a fixed point.
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Proof. The if part. Let Fa, a ∈ A, be a set of fixed points of the mapping fa.
Claim 1. Every set Fa is closed. This is a consequence of the following theorem

[3, Theorem 1.5.4., p. 59]. For any pair f,g of mappings of a space X into a
Hausdorff space Y, the set

{x ∈ X : f(x) = g(x)}
is closed in X.

It suffices to set g(x) = x and Y = X.
Claim 2. If b ≥ a, then pab(Fb) ⊂ Fa. Let xb be any point of Fb. From the

commutativity of the diagram (1.1) it follows pab(fb(x)) = fa(pab(x)). We have
pab(x) = fa(pab(x)) since fb(x) = x. This mens that for the point y = pab(x) ∈ Xa

we have y = fa(y), i.e., y ∈ Fa. We infer that pab(x) ∈ Fa and pab(Fb) ⊂ Fa.
Claim 3. F = {Fa, pab|Fb, A} is an inverse system of compact spaces with the

non-empty limit F.
Claim 4. The set F ⊂ X is the set of fixed points of the mapping f . Let x ∈ F

and let xa = pa(x), a ∈ A. Now, fa(xa) = xa since xa ∈ Fa. We infer that f(x) = x
since the morphism {fa : a ∈ A} induces f . The proof of the ”if” part is complete.

The only if part. Suppose that the induced mapping f has a fixed point x.
Let us prove that every mapping fa, a ∈ A, has a fixed point. Now we have
fapa(x) = paf(x). From f(x) = (x) it follows fapa(x) = pa(x). We infer that pa(x)
is a fixed point for fa. �

As an immediate consequence of this theorem and the Spectral theorem 1.3 we
have the following result.

Theorem 2.2. Let a non-metric continuum X be the inverse limit of an inverse
σ-system X = {Xa, pab, A} such that each Xa has the fixed point property and each
bonding mapping pab is onto. Then X has the fixed point property.

The following result is an application of Theorem 2.2.

Theorem 2.3. Let S be an infinite set and Q = Π{Xs : s ∈ S} Cartesian product
of compact spaces. If each product Xs1 ×Xs2 × ...×Xsn of finitely many spaces Xs

has the fixed point property, then Q has the fixed point property.

Proof. We shall consider the following cases.
Case 1. card(S) = ℵ0. We may assume that S = N. The proof is a straightfor-

ward modification of the proof of [9, Corollary 3.5.3, pp. 106-107]. Let f : Q→ Q
be continuous. For every n ∈ N define

Kn = {x ∈ Q : (x1, ..., xn) = (f(x)1, ..., f(x)n)}.
It is clear that for every n the set Kn is closed in Q and that Kn+1 ⊂ Kn. For
every n ∈ N, let on be a given point of Xn and pn : Q → X1 × ...× Xn be the
projection. Define continuous function fn : X1 × ...×Xn → X1 × ...×Xn by

fn(x1, ..., xn) = (pnf)(x1, ..., xn, on+1, on+2, ...).

By assumption of Theorem fn has the fixed point property, say (x1, ..., xn). It
follows that

(x1, ..., xn, on+1, on+2, ...) ∈ Kn.

We conclude that {Kn : n ∈ N} is a decreasing collection of nonempty closed
subsets of Q. By compactness of Q we have that

K = ∩{Kn : n ∈ N}
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is nonempty. It is clear that every point in K is a fixed point of f .
Case 2 .card(A) ≥ ℵ1. By Theorem 1.4 there exists a σ-directed inverse system

X = {Ya, Pab, A} of the countable products Ya =
∏
{Xµ : µ ∈ a}, card(a) = ℵ0,

such that Q is homeomorphic to limX. By Case 1 each Ya has the fixed point
property. Finally, by Theorem 2.2 we infer that Q has the fixed point property. �

3. Fixed point property for the hyperspaces of non-metric chainable
continua

In this Section we shall study the fixed point property of the hyperspaces of
chainable continua.

A chain {U1, ..., Un} is a finite collection of sets Ui such that Ui
⋂
Uj 6= ∅ if

and only if |i − j| ≤ 1. A continuum X is said to be chainable or arc-like if each
open covering of X can be refined by an open covering u = {U1, ..., Un} such that
{U1, ..., Un} is a chain.

Second Step in the proving fixed point property for hyperspaces of non-metric
chainable continua is the following general expanding Theorem for non-metric
chainable continua into inverse σ-system.

Theorem 3.1. If X is a chainable continuum, then there exists a σ-system Qσ =
{Q∆, p∆Γ, Aσ} such that each Q∆ is a metric chainable continuum, p∆Γ are sur-
jections and X is homeomorphic with the inverse limit limQσ.

Proof. The proof is broken into several steps.
Step 1. If X is a chainable continuum, then there exists a system Q =

{Qa, qab, A} such that each Qa is a metric chainable continuum and X is homeo-
morphic with the inverse limit limQ. By [8, Theorem 2∗] every chainable contin-
uum X is homeomorphic with the inverse limit of an inverse system {Qa, qab, A} of
metric chainable continua Qa. One can assume that qab are onto mappings since a
closed connected subset C of chainable continuum is chainable.

Step 2. There exists a σ-system of chainable continua such that X is homeomor-
phic with its inverse limit. The inverse system {Qa, qab, A} is not a σ-system. Now
we shall prove that such inverse system exists. For each subset ∆0 of (A,≤) we de-
fine sets ∆n, n = 0, 1, ..., by the inductive rule ∆n+1 = ∆n

⋃
{m(x, y) : x, y ∈ ∆n},

where m(x, y) is a member of A such that x, y ≤ m(x, y). Let ∆ =
⋃
{∆n : n ∈ N}.

It is clear that card(∆) = card(∆0). Moreover, ∆ is directed by ≤. For each
directed set (A,≤) we define

Aσ = {∆ : ∅ 6= ∆ ⊂ A, card(∆) ≤ ℵ0 and ∆ is directed by ≤}.

Let us prove that Aσ is σ-directed and σ-complete. Let {∆1, ∆2, ..., ∆n, ...} be a
countable subset ofAσ = {∆ : ∅ 6= ∆ ⊂ A, card(∆) ≤ ℵ0 and ∆ is directed by ≤}.
Then ∆0 = ∪{∆1, ∆2, ..., ∆n, ...} is a countable subset of Aσ. Define sets ∆n,
n = 0, 1, ..., by the inductive rule ∆n+1 = ∆n

⋃
{m(x, y) : x, y ∈ ∆n}, where

m(x, y) is a member of A such that x, y ≤ m(x, y). Let ∆ =
⋃
{∆n : n ∈ N}.

It is clear that card(∆) = card(∆0). This means that ∆ is countable. Moreover
∆ ⊇ ∆i, i ∈ N. Hence Aσ is σ-directed. Let us prove that Aσ is σ-complete. Let
∆1 ⊂ ∆2 ⊂ ...⊂ ∆n ⊂ ... be a countable chain in Aσ. Then ∆ = ∪{∆i : i ∈ N} is
countable and directed subset of A, i.e., ∆ ∈ Aσ. It is clear that ∆ ⊇ ∆i, i ∈ N.
Moreover, for each Γ ∈ Aσ with property Γ ⊇ ∆i, i ∈ N, we have Γ ⊇ ∆. Hence
∆ = sup{∆i : i ∈ N}. This means that Aσ is σ-complete.



FIXED POINT PROPERTY ..... 15

If ∆ ∈ Aσ, let Q∆ = {Qb, qbb′ , ∆} and Q∆ = limQ∆. If ∆, Γ ∈ Aσ and ∆ ⊆ Γ,
let p∆Γ: QΓ → Q∆denote the map induced by the projections qΓ

δ : QΓ → Qδ,
δ ∈ ∆, of the inverse system QΓ.

Now we shall prove that if Q = {Qa, qab, A} is an inverse system, then Qσ =
{Q∆, p∆Γ, Aσ} is a σ-directed and σ-complete inverse system such that limQ and
limQσ are homeomorphic. Each thread x = (xa : a ∈ A) induces the thread
(xa : a ∈ ∆) for each ∆ ∈ Aσ, i.e., the point q∆ ∈ Q∆. This means that we have a
mapping H : limQ → limQσ such that H(x) = (q∆ : ∆ ∈ Aσ). It is obvious that
H is continuous and 1-1. The mapping H is onto since the collections of the threads
{q∆ : ∆ ∈ Aσ} induces the thread in Q. We infer that H is a homeomorphism
since limQ is compact.

Finally, let us prove that every Q∆ is chainable. We may assume that Q∆ = {Qb,
qbb′ , ∆} is an inverse sequence since ∆ is countable and Q∆ = limQ∆. Let u =
{U1, ..., Un} be an open covering of Q∆. There exists a b ∈ ∆ and an open covering
ub = {U b1 , ..., U bm} of Qb such that {q−1

b (U b1), ..., q−1
b (U bm)} refines the covering u =

{U1, ..., Un}. There is a chain {V b1 , ..., V bp } which refines ub since Qb is chainable. It

is clear that {q−1
b (V b1 ), ..., q−1

b (V bp )} is a chain which refines the covering u. Hence,
Q∆ is chainable.

Step 3. One can assume that p∆Γ and p∆ : limQσ → Q∆ are onto mappings.
If p∆Γ and p∆ : limQσ → Q∆ are not onto mappings, then we shall use the
inverse system Qp

σ = {p∆(limQσ), p∆Γ|p∆(limQσ), Aσ}. Each p∆Γ|p∆(limQσ) is
chainable since a closed connected subset of chainable continuum is chainable.

The proof is completed since X is representable as the inverse limit of σ-system
Qσ = {Q∆, p∆Γ, Aσ} of metric chainable continua Q∆. �

Finally, we represent the various hyperspaces of a non-metric chainable contin-
uum X as the inverse limits of hyperspaces of metric chainable continua.

Let X be a space. We define its hyperspaces as the following sets:

2X = {F ⊆ X : F is closed and nonempty},
C(X) = {F ∈ 2X : F is connected},
Fn(X) = {A ⊂ X : A is nonempty and A has at most n points}.

For any finitely many subsets S1, ..., Sn, let

〈S1, ..., Sn〉 =

{
F ∈ 2X : F ⊂

n⋃
i=1

Si, and F ∩ Si 6= ∅, for each i

}
.

The topology on 2X is the Vietoris topology, i.e., the topology with a base
{< U1, ..., Un >: Ui is an open subset of X for each i and each n < ∞ }, and
C(X), X(n) are subspaces of 2X . Moreover, X(1) is homeomorphic to X.

The topology on 2X is the Vietoris topology and C(X) and Fn(X) is a subspaces
of 2X .

Let X and Y be the spaces and let f : X → Y be a mapping. Define 2f :
2X → 2Y by 2f (F ) = f(F ) for F ∈ 2X . It is known that 2f is continuous and
2f (C(X)) ⊂ C(Y ). Moreover, 2f (Fn(X)) ⊂ Fn(Y ). The restriction 2f |C(X) is
denoted by C(f). Similarly, the restriction 2f |Fn(X) is denoted by Fn(f).

Let X = {Xa, pab, A} be an inverse system of compact spaces with the natural
projections pa : limX → Xa, a ∈ A. Then 2X = {2Xa , 2pab , A}, C(X) =
{C(Xa), C(pab), A} and Fn(X) = {Fn(Xa),Fn(pab), A} form inverse systems.
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Lemma 3.2. Let X = limX. Then 2X = lim 2X, C(X) = lim C(X) and Fn(X) =
limFn(X).

In [6, Corollary 5, p. 616] it is proved the following result.

Theorem 3.3. The third symmetric product F3(X) of a metric chainable contin-
uum X has the fixed point property.

The proof given there is purely metric. This means that it is reasonable to give
the proof for non-metric chainable continua.

Theorem 3.4. The third symmetric product F3(X) of a chainable continuum X
(metric or non-metric) has the fixed point property.

Proof. If X is a metric chainable continuum, then apply Theorem 3.3. In order to
complete the proof, we shall assume that X is non-metric chainable continuum.
By Theorem 3.1 there exists a σ-system X = {Xa, pab, A} such that each Xa is a
metric chainable continuum, pab are surjections and X is homeomorphic with the
inverse limit limX. Now we have a σ-system F3(X) = {F3(Xa),F3(pab), A} whose
limit is homeomorphic to F3(X). In order to apply Theorem 2.2 it suffices to prove
that F3(pab) are surjections for every a ≤ b. Let {x1, x2, x3} ∈ F3(Xa). The sets
p−1
ab (x1), p−1

ab (x2), p−1
ab (x3) are non-empty since pab is onto. If y1 ∈ p−1

ab (x1), y2 ∈
p−1
ab (x2) and y3 ∈ p−1

ab (x3), then {y1, y2, y3} ∈ F3(Xb) and F3(pab)({y1, y2, y3}) =
{x1, x2, x3} ∈ F3(Xa). Hence, F3(pab) is a surjection. By Theorem 3.3 each Xa

has the fixed point property. Finally, by Theorem 2.2 we infer that F3(X) has the
fixed point property. �

From the proof of the above theorem it is clear that is true the following theorem.

Theorem 3.5. The nth-symmetric product Fn(X) of a chainable non-metric con-
tinuum X has the fixed point property if the nth-symmetric product of every chain-
able metric continuum has the fixed point property.

From this theorem we shall give the following result.

Theorem 3.6. If X is a non-metric chainable continuum, then X has the fixed
point property.

Proof. Now X is homeomorphic to F1(X) which is homeomorphic to limF1(X).
From Theorem 3.5 it follows that limF1(X) has the fixed point property since
each metric chainable continuum F1(Y ) (homeomorphic to Y ) has the fixed point
property [4]. �

Another hyperspace of a continuum is the hyperspace C(X) = {F ∈ 2X : F is
connected}. The following result is known.

Theorem 3.7. [11]. If Y is a metric chainable continuum, then C(Y ) has the fixed
point property.

For non-metric chainable continua we have the following result.

Theorem 3.8. If X is a non-metric chainable continuum, then C(X) has the fixed
point property.
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Proof. If X is a metric chainable continuum, then apply Theorem 3.7. In order to
complete the proof, we shall assume that X is non-metric chainable continuum.
By Theorem 3.1 there exists a σ-system X = {Xa, pab, A} such that each Xa

is a metric chainable continuum, pab are surjections and X is homeomorphic with
the inverse limit limX. Now we have a σ-system C(X) = {C(Xa), C(pab), A} whose
limit is homeomorphic to C(X). In order to apply Theorem 2.2 it suffices to prove
that C(pab) are surjections for every a ≤ b. Let C ∈ C(Xa). The set p−1

ab (C)
contains a continuum D in Y such that pab(D) = C ([10, Theorem 12.46, p. 262]).
Hence, C(pab) is a surjection. By Theorem 3.7 each Xa has the fixed point property.
Finally, by Theorem 2.2 we infer that C(X) has the fixed point property. �

4. Fixed point property of the product of chainable continua

Dyer [2, Theorem 1, p. 663] showed the following result.

Theorem 4.1. Suppose that M is the Cartesian product of n compact chainable
metric continua X1, X2, ..., Xn and f is a continuous mapping of M into itself.
Then there is a point x ∈M such that x = f(x).

For n = 2 we have the following result.

Theorem 4.2. [5, p. 199, Exercise 22.26]. If X and Y are metric chainable
continua, then X × Y has the fixed point property.

Dyer [2, Corollary, p.665] showed the following general result.

Theorem 4.3. Cartesian product of the elements of any collection of chainable
metric continua has the fixed point property.

We will show that last Theorem 4.3 is true for non-metrizable chainable continua.

Theorem 4.4. Cartesian product of the elements of any collection of chainable
continua of the same weight has the fixed point property.

Proof. If for every s ∈ S we have a chainable non-metrizable continuum X(s),
then, for every s ∈ S, there exists an inverse system X(s) = {Xa(s), pab(s), A(s)}
such that X(s) is homeomorphic to limX(s) and every Xa(s) is a metric chainable
continuum (Theorem 3.1). If w(X(s1)) = w(X(s2)), s1, s2 ∈ S, then A(s1) = A(s2)
and we may suppose that A(s) = A for every s ∈ S. By Theorem 1.1 the family
Π{X(s) : s ∈ S} = {Π{Xa(s) : s ∈ S},Π{ pab(s) : s ∈ S}, A} is an inverse system
and lim(Π{X(s) : s ∈ S}) is homeomorphic to Π{limX(s) : s ∈ S}. From Theorem
4.3 it follows that each Π{Xa(s) : s ∈ S} has the fixed point property. Finally,
from Theorem 2.2 it follows that Π{X(s) : s ∈ S} has the fixed point property. �

QUESTION. Is it true that the assumption ”of the same weight” in Theorem
4.4 can be omitted?

As an immediate application of Theorem 4.4 we give the following generalization
of Brouwer Fixed-Point Theorem. Let L be a non-metric arc. The space X is said
to be a generalized n-cell if it is homeomorphic to Ln = L×L× ...×L (n factors).

Theorem 4.5. Every mapping f : Ln → Ln has a fixed point, i.e., Ln has the fixed
point property.

Theorem 4.5 implies the following result.
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Theorem 4.6. If L1, ..., Ln are arcs (metric or non-metric), then L1×L2× ...×Ln
has the fixed point property.

Proof. Step 1. If M is a subarc of the arc L, then there exists a retraction r :
L→M . Let a, b, c, d be end points of L and M such that a ≤ c < d ≤ b. We define
r : L→M as follows:

r(x) =

 c if a ≤ x ≤ c,
x if c ≤ x ≤ d,
d if d ≤ x ≤ b.

Step 2. If L1, L2, ..., Ln is a finite collection of arcs, then there an arc L
such that L1, L2, ..., Ln are subarc of L. For each i ∈ {1, 2, ..., n} let ai, bi be
a pair of end points of Li such that ai < bi. If we identify the pair of points
{b1, a2}, {b2, a3}, ..., {bn−1, an} we obtain an arc L such that Li ⊂ L for each i ∈
{1, 2, ..., n}.

Step 3. L1×L2×...×Ln is a retract of Ln. Let L and L1, L2, ..., Ln be as in Step
2. Let ri : L → Li, i ∈ {1, 2, ..., n} be a retraction defined in Step 1. Let us prove
that r = r1×r2× ...×rn is a retraction of Ln onto L1, L2, ..., Ln. If (y1, y2, ..., yn) ∈
Ln, then we have: r1 × r2 × ... × rn(y1, y2, ..., yn) = (r1(y1), r2(y2), ..., rn(yn)) ∈
L1 × L2 × ... × Ln since ri(yi) ∈ Li. If (x1, x2, ..., xn) ∈ L1 × L2 × ... × Ln, then
r1 × r2 × ... × rn(x1, x2, ..., xn) = (r1(x1), r2(x2), ..., rn(xn)) = (x1, x2, ..., xn) ∈
L1 × L2 × ...× Ln since ri(xi) ∈ xi.

Step 4. The product L1 × L2 × ...× Ln has the fixed point property since it is
retract of the product Ln which has the fixed point property (Theorem 4.5). The
proof is completed. �

Theorem 4.7. If L = Π{Ls : s ∈ S} is a Cartesian product of arcs Ls, then L has
the fixed point property.

Proof. Apply Theorems 4.6 and 2.3. �

For Cartesian product of two chainable continua the assumption concerning the
weight in Theorem 4.4 can be omitted.

Theorem 4.8. If X and Y are non-metrizable chainable continua, then X×Y has
the fixed point property.

Proof. First we shall prove that if X is any chainable continuum and if Y is a
metric chainable continuum, then X×Y has the fixed point property. By Theorem
3.1 there exists a σ-directed inverse system X = {Xa, pab, A} such that each Xa

is a metric chainable continuum and X is homeomorphic to limX. It is clear
that X×Y = {Xa × Y, pab × id, A} is a σ-directed inverse system whose limit is
homeomorphic to X × Y. Every Xa × Y has the fixed point property since it is the
product of metric chainable continua (Theorem 4.2). Applying Theorem 2.2 we
infer that X × Y has the fixed point property.

Suppose now that X and Y are non-metric chainable continua. Using again
Theorem 3.1 we obtain a σ-directed inverse system X = {Xa, pab, A} such that
each Xa is a metric chainable continuum and X is homeomorphic to limX. It is
clear that X×Y = {Xa × Y, pab × id, A} is a σ-representation of X × Y. From the
first part of this proof it follows that every Xa×Y has the fixed point property since
it is the product of metric chainable continuum Xa and an chainable continuum Y .
Applying Theorem 2.2 we infer that X × Y has the fixed point property. �
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We close this section with the fixed point property for multifunctions on chain-
able continua.

A multifunction, F : X → Y , from a space X to a space Y is a point-to-
set correspondence such that, for each x ∈ X, F (x) is a subset of Y . For any
y ∈ Y , we write F−1(y) = {x ∈ X : y ∈ F (x)}. If A ⊂ X and B ⊂ Y , then
F (A) = ∪{F (x) : x ∈ A} and F−1(B) = ∪{F−1(y) : y ∈ B}.

A multifunction F : X → Y is said to be continuous if and only if: (i) F (x) is
closed for each x ∈ X, (ii) F−1(B) is closed for each closed set B in Y , (iii) F−1(V )
is open for each open set V in Y .

A topological space X is said to have F.p.p ( fixed point property for multi-
valued functions) if for every multi-valued continuous function F : X → X there
exists a point x ∈ X such that x ∈ F (x). It follows that X has F.p.p if for every
single-valued continuous function F : X → 2X there exists a point x ∈ X such that
x ∈ F (x).

Theorem 4.9. [12]. If X is any metric chainable continuum, then X has the
F.p.p.

Now we shall prove the following result.

Theorem 4.10. Each chainable continuum X has the F.p.p.

Proof. If an chainable continuum is metrizable, then it has F.p.p (Theorem 4.9).
Suppose that chainable continuum X is non-metrizable. By virtue of Theorem 3.1
there exists a σ-system Xσ = {X∆, P∆Γ, Aσ} of metric chainable continua X∆

and onto mappings P∆Γ such that X is homeomorphic to limXσ. Moreover, we
have the inverse system 2X = {2Xa , 2pab , A} whose limit is 2X . Let F : X → 2X

be a continuous mapping. From Theorem 1.3 it follows that there exists a subset B
cofinal in A such that for every b ∈ B there exists a continuous mapping Fb : Xb →
2Xb with the property that {Fb : b ∈ B} is a morphism which induce F . Theorem
4.9 implies that the set Yb ⊂ Xb, b ∈ B, of fixed points of Fb is non-empty. Let us
prove that Yb is a closed subset of Xb. We shall prove that Ub = Xb�Yb is open.
Let xb ∈ Ub. This means that xb and Fb(xb) are disjoint closed subset of Xb. By the
normality of Xb there exists a pair of open sets U, V such that x ∈ U and Yb ⊂ V .
From the continuity of Fb it follows that there exists an open set W ⊂ U such that
for every x ∈ W we have f(x) ⊂ V. Hence, Ub is open and, consequently, Yb is
closed. Now, we shall prove that the collection {Yb, pbc|Yc, B} is an inverse system.
To do this we have to prove that if c > b, then pbc(Yc) ⊂ Yb. Let xc be a point
of Yc. This means that xc ∈ fc(xc). Hence, pbc(xc) ∈ pbc(Fc(xc)) = Fbpbc(xc).
We conclude that the point xb = pbc(xc) has the property xb ∈ fb(xb), i.e., xb =
pbc(xc) ∈ Yb. Finally, pbc(Yc) ⊂ Yb. and {Yb, pbc|Yc, B} is an inverse system with
non-empty limit. Let Y = lim {Yb, pbc|Yc, B}. In order to complete the proof we
shall prove that for every x ∈ Y we have x ∈ F (x). Now we have pb(x) ∈ Yb,
i.e., pb(x) ∈ Fb(pb(x)) = pbF (x), for every b ∈ B. It follows that x ∈ F (x) since
x /∈ F (x) implies that there is a b ∈ B such that pb(x) /∈ pbF (x). We conclude that
F has the fixed point property. �
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