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RELATIONS BETWEEN HEUN EQUATIONS AND PAINLEVE

EQUATIONS

S.YU. SLAVYANOV, A.YA. KAZAKOV, F. R. VUKAJLOVIĆ

Special functions play significant role in Computer Algebra packages. Here we
can mention all-purpose packages as Mathematika or Maple as well as specialized
packages as SFTools. Further development would without doubt be focused on
Heun functions and closely related Painleve transcendents. Partly the relation-
ship between Heun equations and Painleve equations is presented in the package
SFTools. However new studies induce revision of presentation of these relations.
The items of these revisions are the following.

1. Relations between equations belonging to Heun class, the corresponding
deformed equations with added apparent singularity and the corresponding
2 × 2 systems. It is needed to stress that two different 2 × 2 systems
correspond to one deformed equation.

2. Relations between integral transforms linking different equations belonging
to Heun class and Okamoto-type transforms linking Painleve equations.
These give rise to symmetries in the class of corresponding functions.

3. Relations between known physical models which are solved in terms of
Heun functions like two-Coulomb centers problem, Stark effect etc. and
the corresponding problems in classical dynamics.

In the publications [1, 2] and later in the the book [3] the author formulated the
statement that every equation belonging to Heun class induces the corresponding
equation belonging to Painleve class. This statement has been implemented in the
package SFTools which supplied different information on special functions [4]. The
mentioned induction called later as ”antiquantization” is realised by substitution
instead of quantum variables: coordinate and momentum – in the hamiltonian for
Heun equations – the classical variables in the corresponding classical Lagrangian.
Newtonian equations of motion appear to be Painleve equations. However several
aspects of the theory were missing at that stage. These there:

1. What transforms of Painleve equations are induced by s-homotopic trans-
formations of Heun equations?

2. What are the deformed Heun equations generated from Heun equation by
adding an apparent singularity?

3. What are the relations to 2 × 2 first order linear systems which often are
assumed as basic in handling with Painleve equations?

4. Are there other linear systems related to Painleve equations?
5. What transforms of Painleve equations are induced by integral transforms

of Heun equations?
6. What classical physical problems are related to the well-known quantum

problems exposed in terms of particular equations belonging to Heun class?
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In view of a large number of Heun equations the detailed answer to posed questions
is rather complicated and needs to be coded in a software package. Here is given a
general approach to basic Heun equation. The presentation is referring to previous
publications of the author with collaborators. The canonical form of Heun equation
is chosen as

w′′ +

[
1− θ1

z
+

1− θ2

z − 1
+

1− θ3

z − t

]
w′ +[

αβ

z(z − 1)
− t(t− 1)H

z(z − 1)(z − t)

]
w = 0.(1)

Here θj are characteristic exponents for the solutions with singularities at the points
zj , z1 = 0, z2 = 1, z3 = t.

Parameters α, β – are characteristic exponents at infinity. According to Fuchs
theorem it holds

(2)

3∑
j=1

θj + α+ β = 1.

Parameter H is assumed to be the energy. It is normalized in such a way that
the residue of of the corresponding term at z = t is unity. A more general Heun
equation can be obtained by applying linear transformation of independent variable
and s-homotopic transformations [3] of dependent variable

y := (z − zk)γkw.

It is as following

σ(z)y′′(z) +

3∑
j=1

(1− bj)σj(z)y′(z) +

 3∑
j=1

ajσj(z)

(z − zj)
+ δ(z − z3)−

 λσ3(z3)

(z2 − z1)
+

1

2

2∑
j=1

(1− b3)(1− bj)
σ3(z3)

z3 − zj

 y(z) = 0.(3)

Here

bj = (ρ1j + ρ2j), aj = ρ1jρ2j , j = 1, 2, 3, a∞ = κ1κ2,

σ(z) =

3∏
j=1

(z − zj), σj(z) =
σ(z)

z − zj
,

δ = a∞ −
3∑
j=1

aj ,

where ρmj are characteristic exponents at finite singular points and κ1, κ2 are char-
acteristic exponents at infinity. It can be shown that the quantity λ stays invariant
under transforms mentioned above. The other invariants are squares of differences
between characteristic exponents

∆j = (ρ1j − ρ2j)
2, j = 1, 2, 3 ∆∞ = (κ1 − κ2)2.
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Applying the antiquantization procedure we arrive to the following equation [5]

2σ3(t)√
σ(q)

d

dt

q̇σ3(t)√
σ(q)

+
q̇σ2

3(t)

σ(q)(q − t)
+−∆∞ +

2∑
j=1

(∆j + 1− 2bj)σj(zj)

(q − zj)2
+

(∆3 − 1)σ3(t)

(q − t)2

 = 0.(4)

This is a general form of the Painlevé equation P 6 generated by general form Heun
equation. Two important features of equation (4) should be emphasized.

1. The role of the singular point z3 = t in (1) is specific in (4) compared to
the other points z1, z2.

2. The only influence of generalization due to s-homotopic transformation is
a slight dependence on bj j = 1, 2 in (4).

Deformed Heun equations. Here only the canonical form of Heun equation
is studied. The deformed Heun equation termed as Heun1 arises by adding an
apparent singularity into Heun equation thus increasing the number of Fuchsian
singular points up to five. It can be written as following.

w′′ +

[
1− θ1

z
+

1− θ2

z − 1
+

1− θ3

z − t
− 1

z − q

]
w′ +

+

[
αβ

z(z − 1)
+

q(q − 1)p

z(z − 1)(z − q)
− t(t− 1)H

z(z − 1)(z − t)

]
w = 0,(5)

where θj , j = 1, 2, 3, are the characteristic exponents for solutions with singularities
at the singular points zj . The set of parameters θ1, θ2, α, β, t, q and p corresponds
to this equation. We note that θ3 is considered a dependent parameter because the
Fuchs condition slightly different from (2)

(6)

3∑
j=1

θj + α+ β = 0

related to the characteristic exponents at singularities must be satisfied (the choice
of the one dependent parameter θ3 among θ1, θ2, and θ3 is arbitrary). The pa-
rameter H is not an independent parameter of (5) either; it is determined from
the condition that the point z = q is an apparent singularity of the equation. This
condition leads to an explicit expression for H in terms of the parameters θ1, θ2,
α, β, q, p, and t.

(7) H =
1

σ3(t)

σ(q)p2 + p

3∑
j=1

σj(q)(1− θj) + αβ(q − t)

 .
These considerations can be inverted. Namely, if dependence on t is assumed for
functions p(t) and q(t) then the property of the apparent singularity to stay an
apparent singularity along the path p(t), q(t) in the phase space if p(t), q(t) obey
the Hamilton system of equations generated by the hamiltonian H. This latter
system is equivalent to P 6 derived above.



198 S.YU. SLAVYANOV, A.YA. KAZAKOV, F. R. VUKAJLOVIĆ

First order 2× 2 linear system. Historically Painlevé equations are more often
related to first order 2×2 systems. However the explicit derivation of P 6 from such
systems is to the authors experience extremely boring. Moreover, several additional
conditions on the system should be posed and it is not clear to what extent they
are necessary. A thorough explanation of this general situation is presented in the
recent article by M.V. Babich ([6]). Here we present a more particular approach to
this problem referring to ([7]). What are the demands to the system if it is assumed
to generate (5)?

1. Firstly, regular singularities of this system must be z1 = 0, z2 = 1, z3 =
t, z4 =∞.

2. Secondly characteristic exponents at infinity must be α, β.
3. Transform from the system to a second order equation must lead to only

one apparent singularity

The system for a vector function W is assumed to be

(8) MW ′ = NW

with the following values of the matrix coefficients for matrices M and N

(9)

(
z2 − z ρ(z − 1)
z z − t− ρ

)
W ′ =

(
−αz + e1 e2

e3 −β

)
W.

Demands 1. and 2. can be easily checked. System (8) can be brought to the form

(10) W ′ = TW, T = M−1N =
(
σ(z)

)−1
S,

where

σ(z) = detM =

3∏
j=1

(z − zj).

Solving system (10) for w1(z), we obtain the second-order equation

(11) w′′1 (z) + f (1)(z)w′1(z) + g(1)(z)w1(z) = 0,

where

f (1)(z) = −T ′12T
−1
12 − trT, g(1)(z) = T ′12T

−1
12 T11 − T ′11 + detT.

Next, solving system(10) for w2(z), we obtain the second-order equation

(12) w′′2 (z) + f (2)(z)w′2(z) + g(2)(z)w2(z) = 0,

where

f (2)(z) = −T ′21T
−1
21 − trT, g(2)(z) = T ′21T

−1
21 T22 − T ′22 + detT.

The matrix S(z) is evaluated in accordance with (10) and is given by

(13)

(
−αz2 + z

(
e1 − ρg2 + αt

)
− te1 + ρf2 g1z − f1

g2z
2 − zf1 −βz2 + z(β − e2)

)
with

f1 = ρβ + t− ρe2, f2 = e3 + e1.

g1 = ρβ + e2, g2 = e3 + α.
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This implies that in addition to the regular singularities coincident with the reg-
ular singularities of system (10), Eqs. (11) and (12) each have only one apparent
singularity,

(14) q(1) =
ρβ + (t− ρ)e2

ρβ + e2
and q(2) =

e3 + e1

e3 + α
.

Therefore, these equation are Heun1 equations. We evaluate trT and detT , which
are the same for Eqs.(11) and (12):

(15)

− trT =
e1

z
+
α− e1

z − 1
+

β

z − t
+

ρf2

z(z − t)
− 1

z − 1

(
e2 − ρ(e1 − α)

t− 1

)
−

+
1

z − t

(
e2 − ρ(e1 − α)

t− 1

)
,

detT =
αβ

z(z − 1)
+
tαβ − βe1 − e2e3

σ
.

From (15), we obtain the residue of trT at infinity:

(16) lim
z→∞

z trT = −α− β.

Using (13), we next evaluate the following expressions, which determine the coeffi-
cients of Eqs. (11) and (12):

(17)

− T ′12T
−1
12 = − 1

z − q(1)
+

3∑
j=1

1

z − zj
, −T ′21T

−1
21 = − 1

z − q(2)
+

3∑
j=2

1

z − zj
,

T ′12T
−1
12 T11 − T ′11 =

α

z(z − 1)
+

[
αt− e1 + ρ

f2 − q(1)g2

t− q(1)

]
1

σ
+

+

[
−αq(1) + e1 − ρ

f2 − q(1)g2

t− q(1)

]
1

σ(1)
,

T ′21T
−1
21 T22 − T ′22 =

e2 + β(q(2) − 1)

t− q(2)

(
q(2)

σ(2)
− t

σ

)
,

where

σ(k)(z) = z(z − 1)
(
z − q(k)

)
, k = 1, 2.

This preliminary computations enable to find explicit expressions for the coefficients
of Eqs. (11) and (12) and as a result explicit formulas for ρ, ej , j = 1, 2, 3 in terms
of θj , j = 1, 2, and p, q. The calculations are troublesome and can be simplified
by Computer Algebra systems. Here are given final results only for equation (12)
omitting index (2).

e1 = −σ3(q)p− 1

q − t
(t(q − 1)(θ1 − 1) + q(t− 1)(θ2 − α) + βσ3(q)),

e2 = −σ1(q)p− β(q − 1),

e3 = −qp− 1

q − t

(
t(θ1 − 1) +

q

q − 1
(t− 1)θ2 + q(α+ β)

)
,

ρ = t
q − 1

q

e1 + θ1 − 1

e1 − α
(18)
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Of course, inverse formulas can also be obtained.

Integral transform for 2× 2 systems. We have studied the Fuchsian system of
equations

(19) (z2A+ zB + C)
dW

dz
= (−αzA+ E)W,

where A, B, C, and E are 2×2 matrices independent on z

A =

(
1 0

0 0

)
, B =

(
−1 ρ

1 1

)
, C =

(
0 −ρ
0 ρ− t

)
, E =

(
e1 e2

e3 −β

)
.

If the solution of system (19) is represented as

(20) W (z) =

∫
L

(z − ξ)−αΦ(ξ) dt,

where Φ(t) is a two-vector function and the integration contour L in the complex
plane is specified properly then Φ(ξ) should be a solution of the similar system but
with modified matrix coefficients

(21) (ξ2A+ ξB + C)
dΦ(ξ)

dξ
=
(
(α− 2)ξA+ E + (α− 1)B

)
Φ(ξ) = 0,

Therefore we arrive to the following chain: Heun1 → Fuchsian system → modified
Fuchsian system → modified Heun1. If at the first stage the Painlevé equation
is generated then at the end the transformed Painleve equation is obtained. This
transformation of Painlevé equations belongs to the Okamoto-type transforms. The
other way of derivation the Okamoto transforms was proposed in [8].

Fuchsian system 3×3. A particular Fuchsian system of 3×3 first order equations
with three Fuchsian singularities at finite points zj can also be regarded in respect
to Heun equation

(22) A(z)~w′(z) = B~w(z), ~w(z) =

w1(z)
w2(z)
w3(z)

 .

The matrices A(z) and B is supposed to be of the form

(23) A(z) =

z − z1 0 0
0 z − z2 0
0 0 z − z3

 , B =

b11 b12 b13

b21 b22 b23

b31 b32 b33

 .

The particularity of (22) is determined by the specific values of Frobenius exponents
at singularities

ρmj = 0, 1, bjj

With already introduced notation for σ and σj and parameters k and q intro-
duced by

k = b13B21 + b12B31

q =
b13B21z2 + b12B31z3

b13B21 + b12B31
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the following third order Fuchsian equation can be derived [9]

σ(z)w′′′1 (z)−

 3∑
j=1

σj(z)(bjj − 1)− σ1(z) +
σ

z − q

w′′1 (z) +

 3∑
j=1

Bjj(z − zj)−
(1− b11)σ1

z − q
+
B11b13b12(z2 − z3)z

k(z − q)

w′1 −

(z2 − z3)b13b12 detB

k(z − q)
w1 = 0.(24)

It has Fuchsian singularities at z = zj and one additional apparent singularity at
z = q.

Along with (24) a particular Fuchsian third-order equation with singularities
located at the points z1 = 0, z2 = 1, z3 = t can be considered

(25) σy(z)′′′ +

3∑
j=1

bjσjy(z)′′ + ((∆2 + ∆1 + 1)(z − z3) + λ)y(z)′ + ∆3y(z) = 0.

Here ∆1, ∆2, ∆3 are standard symmetric functions of three parameters a, b, c

∆1 = a+ b+ c, ∆2 = ab+ bc+ ac, ∆3 = abc.

Parameters a, b, c, bj , j = 1, 2, 3 determine local behaviour of solutions at singular-
ities zj and ∞. Parameter λ is an accessory parameter. The Riemann scheme for
this equation

(26)


z1 z2 z3 ∞ z
0 0 0 a λ
1 1 1 b

2− b1 2− b2 2− b3 c


shows the Frobenius characteristic exponents. It means that at each finite singular-
ity there is one holomorphic solution depending on two initial data and one solution
which in general is not holomorphic.

Comparing (24) and (25) one sees that in principle they only differ in existence
of an additional apparent singularity in (24). Equation (25) is obtained from (24)
by specification of parameters and additional s-homotopic transform. Assuming,
for example, a = 0 we arrive to one equation with the solution equal to a sum of
a constant and general solution of Heun equation. The other possibility to obtain
this result is the use of an appropriate Euler transform [10].
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