ON τ-\oplus-SUPPLEMENTED MODULES

Y. TALEBI, T. AMOOZEGAR, AND A. R. MONIRI HAMZEKOLAEI

Abstract. Let τ be any preradical and M any module. In [2], Al-Takhman, Lomp and Wisbauer defined τ-supplemented module. In this paper we introduce the (completely) τ-\oplus-supplemented modules. It is shown that (1) Any finite direct sum of τ-\oplus-supplemented modules is τ-\oplus-supplemented. (2) If M is τ-\oplus-supplemented module and (D_3) then M is completely τ-\oplus-supplemented.

1. Introduction

Throughout this paper R will denote an arbitrary associative ring with identity and all modules will be unitary right R-modules. A functor τ from the category of the right R-modules to itself is called a preradical if it satisfies the following properties:

(1) $\tau(M)$ is a submodule of an R-module M,
(2) If $f : M' \rightarrow M$ is an R-module homomorphism, then $f(\tau(M')) \subseteq \tau(M)$ and $\tau(f)$ is the restriction of f to $\tau(M')$.

A preradical τ is called a right exact preradical if for any submodule K of M, $\tau(K) = \tau(M) \cap K$. But it is well known if K is a direct summand of M, then $\tau(K) = \tau(M) \cap K$ for a preradical.

Let M be an R-module and τ denote a preradical. Like in [2], a submodule $K \leq M$ is called τ-supplement (weak τ-supplement) provided there exists some $U \leq M$ such that $M = U + K$ and $U \cap K \subseteq \tau(K) \ (U \cap K \subseteq \tau(M))$.

M is called τ-supplemented (weakly τ-supplemented) if each of its submodules has a τ-supplement (weak τ-supplement) in M. M is called amply τ-supplemented, if for all submodules K and L of M with $K + L = M$, K contains a τ-supplement of L in M. Kosan and Harmanci [9] studied supplemented modules relative to torsion theories. Motivated by their work, we study \oplus-supplemented modules with respect to a preradical. Also another work has been done on C_1 modules (see [12]).

A module M is called τ-lifting if for every submodule K of M, there is a decomposition $K = A \oplus B$, such that A is a direct summand of M and $B \subseteq \tau(M)$.

In this paper we introduce the (completely) τ-\oplus-supplemented modules and investigate some properties of them.

Our paper is organized as follows.

In Section 2, we define the concept of τ-\oplus-supplemented module. We call a module M τ-\oplus-supplemented if every submodule of M has a τ-supplement that is a direct summand of M. Then we show any finite direct sum of τ-\oplus-supplemented modules is τ-\oplus-supplemented. We also investigate when a direct summand of a τ-\oplus-supplemented module is τ-\oplus-supplemented.

©2008 Aulona Press (Albanian J. Math.)

57
In Section 3, we call a module M completely τ-\oplus-supplemented if every direct summand of M is τ-\oplus-supplemented and prove that M is τ-\oplus-supplemented module and (D_3), then M is completely τ-\oplus-supplemented.

The notation $N \leq_d M$ denotes that N is a direct summand of M.

Definition 1.1. For any preradical τ, we call a module M, τ-\oplus-supplemented if every submodule of M has a τ-supplement that is a direct summand of M.

Theorem 1.2. For any preradical τ, any finite direct sum of τ-\oplus-supplemented modules is τ-\oplus-supplemented.

Proof. Let $M = M_1 \oplus M_2$ where M_1 and M_2 are two τ-\oplus-supplemented modules. Let P be any submodule of M. We have $P + M_2 = M_2 \oplus [(P + M_2) \cap M_1]$ and $(P + M_2) \cap M_1$ is a submodule of M_1. Since M_1 is τ-\oplus-supplemented, there exists a direct summand K_1 of M_1 such that $[(P + M_2) \cap M_1] + K_1 = M_1$ and $(P + M_2) \cap K_1 \subseteq \tau(K_1)$. We have $(P + K_1) \cap M_2$ is a submodule of M_2, so there exists a direct summand K_2 of M_2 such that $[(P + K_1) \cap M_2] + K_2 = M_2$ and $(P + K_1) \cap K_2 \subseteq \tau(K_2)$. Let $K = K_1 \oplus K_2$, K is a direct summand of M. Moreover $M_1 \leq P + M_2 + K_1$ and $M_2 \leq P + K_1 + K_2$. Hence $M = P + K_1 + K_2 = P + K$. Since $P \cap (K_1 + K_2) \leq [(P + K_1) \cap K_2] + [(P + K_2) \cap K_1]$, thus $P \cap (K_1 + K_2) \leq [(P + K_1) \cap K_2] + [(P + M_2) \cap K_1]$. As $(P + M_2) \cap K_1 \subseteq \tau(K_1) + \tau(K_2)$, we have $(P \cap K) \subseteq \tau(K)$. Thus M is τ-\oplus-supplemented.

A nonzero module M is called completely torsion if for every proper submodule K of M, $K \subseteq \tau(M)$.

Corollary 1.3. For any preradical τ, any finite direct sum of completely torsion modules is τ-\oplus-supplemented.

Theorem 1.4. Let $M_i (1 \leq i \leq n)$ be any finite collection of relatively projective modules. Then for any preradical τ, the module $M = \bigoplus_{i=1}^{n} M_i$ is τ-\oplus-supplemented if and only if M_i is τ-\oplus-supplemented for each $1 \leq i \leq n$.

Proof. The sufficiency is proved in Theorem 1.2 Conversely, we only prove M_i to be τ-\oplus-supplemented. Let $A \leq M_1$. Then there exists $B \leq M$ such that $M = A + B$, B is a direct summand of M and $A \cap B \subseteq \tau(B)$. Since $M = A + B = M_1 + B$, by [10] Lemma 4.47, there exists $B_1 \leq B$ such that $M = M_1 \oplus B_1$. Thus $B = B_1 \oplus (M_1 \cap B)$. Note that $M_1 = A + (M_1 \cap B)$ and $M_1 \cap B$ is a direct summand of M_1. Therefore $A \cap B = A \cap (M_1 \cap B) \subseteq \tau(B) \cap (M_1 \cap B) = \tau(M_1 \cap B)$. Hence M_1 is τ-\oplus-supplemented.

A factor module of a τ-\oplus-supplemented module need not be τ-\oplus-supplemented for $\tau = \text{Rad}$ (see Examples 2.2 and 2.3).

Theorem 1.5. Let M be a τ-\oplus-supplemented module for any preradical τ and $X \leq M$. If for every direct summand K of M, $(X + K)/X$ is a direct summand of M/X, then M/X is τ-\oplus-supplemented.

Proof. Let $N/X \leq M/X$. Since M is τ-\oplus-supplemented, there exists a direct summand K of M such that $N + K = M$ and $N \cap K \subseteq \tau(K)$. Then $N/X + (K + X)/X = M/X$. By assumption, $(K + X)/X$ is a direct summand of M/X. It is easy to check that $(N/X) \cap ((K + X)/X) \subseteq \tau((K + X)/X)$.
Let M be a module. Then M is called **distributive** if its lattice of submodules is a distributive lattice, equivalently for submodules K, L, N of M, $N + (K \cap L) = (N + K) \cap (N + L)$ or $N \cap (K + L) = (N \cap K) + (N \cap L)$.

Let M be a module. A submodule X of M is called **fully invariant**, if for every $f \in \text{End}(M)$, $f(X) \subseteq X$. The module M is called **duo module**, if every submodule of M is fully invariant. The submodule A of M is called **projection invariant** in M if $f(A) \subseteq A$, for any idempotent $f \in \text{End}(M)$.

Corollary 1.6. Let M be a $\tau \oplus$-supplemented module for any preradical τ.

1. Let $N \leq M$ such that for each decomposition $M = M_1 \oplus M_2$ we have $N = (N \cap M_1) \oplus (N \cap M_2)$. Then M/N is $\tau \oplus$-supplemented. (In particular, this is true for any distributive module). If moreover $N \leq_d M$, then N is $\tau \oplus$-supplemented.

2. Let X be a projection invariant submodule of M. Then M/X is $\tau \oplus$-supplemented. In particular, for every fully invariant submodule A of M, M/A is $\tau \oplus$-supplemented.

Proof.

1. Let $L/N \leq M/N$. Since M is $\tau \oplus$-supplemented, there exists a direct summand D of M such that $M = L + D$ and $L \cap D \subseteq \tau(D)$. Then $M/N = L/N + (D + N)/N$ and $L/N \cap (D + N)/N = (L \cap (D + N))/N \subseteq \tau((D + N)/N)$.

Let $M = D \oplus D'$. By assumption, $N = (N \cap D) \oplus (N \cap D') = (D + N) \cap (D' + N)$. So, $(D + N)/N \oplus (D' + N)/N = M/N$. It follows that M/N is $\tau \oplus$-supplemented.

Now let $N \leq_d M$ and $V \leq N$. Then there exist submodules K and K' of such that $M = K \oplus K' = V + K$ and $V \cap K \subseteq \tau(K)$. Thus $N = V + N \cap K$. By assumption $N \cap K \leq_d N$. Moreover, $V \cap (N \cap K) \subseteq \tau(K)$. Then $V \cap (N \cap K) \subseteq \tau(N \cap K)$. Therefore, N is $\tau \oplus$-supplemented.

2. Clear by (1). \square

Let M be an R-module. By $P_\tau(M)$ we denote the sum of all submodules N of M with $\tau(N) = N$. Since $P_\tau(M)$ is a sum of some submodules of M, itself is a submodule of M.

Corollary 1.7. Let M be a $\tau \oplus$-supplemented module for any preradical τ. Then $M/P_\tau(M)$ is $\tau \oplus$-supplemented. If moreover $P_\tau(M) \leq_d M$, then $P_\tau(M)$ is $\tau \oplus$-supplemented.

Proof. By Corollary 1.6(1), it suffices to prove that $P_\tau(M)$ is a fully invariant submodule of M. Let $N \leq M$ such that $N = \tau(N)$ and $f \in \text{End}(M)$ and g its restriction to N. But $\tau(N) = N$ and $f(N) = g(N)$, hence $f(N) \subseteq \tau(f(N))$. Thus, $\tau(f(N)) = f(N)$. This implies that $f(N) \subseteq P_\tau(M)$. This completes the proof. \square

We recall that a module M is called **semi-Artinian** if every nonzero quotient module of M has nonzero socle. For a module M, we define $Sa(M) = \sum\{U \leq M \mid U\text{-semi-Artinian}\}$.

Corollary 1.8. Let M be a $\tau \oplus$-supplemented module for any preradical τ. Then $M/Sa(M)$ is $\tau \oplus$-supplemented. If, moreover, $Sa(M)$ is a direct summand of M, then $Sa(M)$ is also $\tau \oplus$-supplemented.

Proof. Let $f \in \text{End}(M)$ and U a semi-Artinian submodule. Let g be restriction of f to U. Thus $U/\text{Ker}(g) \cong g(U)$. Hence $f(U) \cong U/\text{Ker}(g)$. But it is easy to check that $U/\text{Ker}(g)$ is a semi-Artinian module. Therefore, $f(U)$ is semi-Artinian. This implies that $f(Sa(M)) \subseteq Sa(M)$. Thus $Sa(M)$ is a fully invariant submodule of M. The result follows from Corollary 1.6(1). \square
Remark 1.9. If M is a τ-\oplus-supplemented module for any preradical τ, then $M/\tau(M)$ is semisimple and hence τ-\oplus-supplemented.

Example 1.10. Let M be the \mathbb{Z}-module $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$. By [8] Example 10], M is not lifting and it is not τ-lifting. By [3] Theorem 1.4], M is \oplus-supplemented and hence τ-\oplus-supplemented for $\tau = \operatorname{Rad}$.

A τ-lifting module is τ-\oplus-supplemented. But the converse does not hold. The following proposition shows that under some assumption it can be true.

Proposition 1.11. Assume M is τ-\oplus-supplemented for any preradical τ such that whenever $M = M_1 \oplus M_2$ then M_1 and M_2 are relatively projective. Then M is τ-lifting.

Proof. Let $N \leq M$. Since M is τ-\oplus-supplemented, there exists a decomposition $M = M_1 \oplus M_2$ such that $M = N + M_2$ and $N \cap M_2 \subseteq \tau(M_2)$ for submodules M_1, M_2 of M. By hypothesis, M_1 is M_2-projective. By [10] Lemma 4.47, we obtain $M = A \oplus M_2$ for some submodule A of M such that $A \leq N$. Then $N = A \oplus (M_2 \cap N)$. So M is τ-lifting by [2], 2.8.

Corollary 1.12. Let M be a τ-\oplus-supplemented module for any preradical τ. If M is projective then M is τ-lifting.

Now we give a characterization of τ-\oplus-supplemented rings.

Theorem 1.13. Let τ be any preradical. Then the following are equivalent:

1. R is τ-\oplus-supplemented;
2. Every finitely generated free R-module is τ-\oplus-supplemented;
3. If F is a finitely generated free R-module and N a fully invariant submodule, then F/N is τ-\oplus-supplemented.

Proof. (1) \Rightarrow (2) Let M be a finitely generated free R-module. Then $M \cong \bigoplus_{i=1}^{n} R$. Since any finite direct sum of τ-\oplus-supplemented modules is τ-\oplus-supplemented, the result follows.

(2) \Rightarrow (3) By (2), F is τ-\oplus-supplemented. The result follows from Corollary 1.6 (2).

(3) \Rightarrow (1) is clear.

Lemma 1.14. Let $M = M_1 \oplus M_2$. Then for any preradical τ, M_2 is τ-\oplus-supplemented if and only if for every submodule N/M_1 of M/M_1, there exists a direct summand K of M such that $K \leq M_2$, $M = K + N$ and $N \cap K \subseteq \tau(M)$.

Proof. Suppose that M_2 is τ-\oplus-supplemented. Let $N/M_1 \leq M/M_1$. As M_2 is τ-\oplus-supplemented, there exists a decomposition $M_2 = K \oplus K'$ such that $M_2 = (N \cap M_2) + K$ and $N \cap K \subseteq \tau(K)$. Note that $M = (N \cap M_2) + K + M_1$ gives $M = N + K$.

Conversely, suppose that M/M_1 has the stated property. Let H be a submodule of M_2. Consider the submodule $(H \oplus M_1)/M_1 \leq M/M_1$. By hypothesis, there exists a direct summand L of M such that $L \leq M_2$, $M = (L + H) + M_1$ and $L \cap (H + M_1) \subseteq \tau(M)$. By modularity, $M_2 = L + H$. Then $L \cap H \subseteq \tau(L)$. Thus, L is a τ-supplement of H in M_2 and it is a direct summand of M_2. Therefore, M_2 is τ-\oplus-supplemented.
Theorem 1.15. Let \(\tau \) be any preradical and \(M \) a direct summand of a \(\tau \)-supplemented module \(M \) such that for every direct summand \(K \) of \(M \) with \(M = K + M \), \(K \cap M \) is a direct summand of \(M \). Then \(M \) is \(\tau \)-supplemented.

Proof. Suppose that \(M = M_1 \oplus M_2 \) and let \(N/M_1 \leq M/M_1 \). Consider the submodule \(N \cap M_2 \) of \(M \). Since \(M \) is \(\tau \)-supplemented, there exists a direct summand \(K \) of \(M \) such that \(M = (N \cap M_2) + K \) and \(N \cap M_2 \cap K \subseteq \tau(K) \). Note that \(M = N + M_2 \).

By [2] Lemma 1.2, \(M = (K \cap M_2) + N \). Since \(M = K + M_2 \), \(K \cap M_2 \) is a direct summand of \(M \) by hypothesis. By Lemma 1.14, \(M \) is \(\tau \)-supplemented.

\[\square \]

Corollary 1.16. Let \(M \) be a \(\tau \)-supplemented module for any preradical \(\tau \) and \(K \) a direct summand of \(M \) such that \(M/K \) is \(K \)-projective. Then \(K \) is \(\tau \)-supplemented.

Proof. Let \(L \) be a direct summand of \(M \) with \(M = L + K \). Since \(K \) is a direct summand of \(M \), \(M = K \oplus K_0 \) for some submodule \(K_0 \) of \(M \). Therefore, \(K_0 \) is \(K \)-projective. Then by [16] 41.14, there exists a submodule \(L_0 \) of \(L \) such that \(M = L_0 \oplus K \). Now \(L = L' \oplus (L \cap K) \) implies that \(L \cap K \) is a direct summand of \(M \). By Theorem 1.15, \(K \) is \(\tau \)-supplemented.

\[\square \]

Corollary 1.17. Let \(M \) be a \(\tau \)-supplemented module for any preradical \(\tau \) and \(N \leq_d M \) such that \(M/N \) is projective. Then \(N \) is \(\tau \)-supplemented.

A submodule \(N \) of \(M \) is called small in \(M \) (notation \(N \leq M \)) if \(\forall L \leq M, L+N \neq M \). A module \(M \) is called hollow if every proper submodule of \(M \) is small in \(M \).

Let \(M \) be a module and \(S \) denote the class of all small modules. Talebi and Vana [13] defined \(Z(M) \) as follows:

\[Z(M) = \bigcap \{ \ker g \mid g \in \text{Hom}(M, L), L \in S \}. \]

The module \(M \) is called cosingular (non-cosingular) if \(Z(M) = \{0\} (Z(M) = M) \). Clearly every non-cosingular module is \(Z \)-supplemented. Also if \(R \) is a non-cosingular ring, then every \(R \)-module is \(Z \)-supplemented by [13] Proposition 2.4.

In [11] for any preradical \(\tau \), the authors call a module \(M \), \(\tau \)-semiprfect if it satisfies one of the following conditions (see [11] Proposition 2.1):

1. For every submodule \(K \) of \(M \) there exists a decomposition \(K = A \oplus B \) such that \(A \) is a projective direct summand of \(M \) and \(B \subseteq \tau(M) \);
2. For every submodule \(K \) of \(N \), there exists a decomposition \(M = A \oplus B \) such that \(A \) is a projective direct summand of \(M \), \(A \leq K \) and \(K \cap B \subseteq \tau(M) \).

By this definition every \(\tau \)-semiprfect module is \(\tau \)-lifting and hence \(\tau \)-supplemented.

Also if \(M \) is projective we have the following:

\[\tau \text{-semiprfect} \iff \tau \text{-lifting} \iff \tau \text{-supplemented}. \]

A \(\tau \)-supplemented module need not be \(\oplus \)-supplemented and the converse also hold.

Example 1.18. Let \(K \) be a field and let \(R = \prod_{n \geq 1} K_n \) with \(K_n = K \). By [14] Example 4.1(1)] \(R \) is not semiprfect. Since \(R \) is projective, \(R \) is not \(\oplus \)-supplemented by [13] Lemma 1.2]. Again by [14] Example 4.1(1)], the module \(R \) is \(Z \)-semiprfect and so it is \(Z \)-supplemented.

If \(R \) is a DVR (Discrete Valuation Ring), then by [14] Example 4.1(1)] the \(R \)-module \(R_R \) is semiprfect and hence \(\oplus \)-supplemented but it is not \(Z \)-semiprfect and so it is not \(Z \)-supplemented.

Now we give an equivalent condition for a module to be \(Z \)-supplemented under some assumptions.
Proposition 1.19. Let R be a commutative ring and P a projective module with $\text{Rad}(P) \ll P$ and P has finite hollow dimension. Then the following are equivalent:

1. P is $\mathbb{Z}\oplus$-supplemented;
2. $P = P_1 \oplus P_2 \oplus P_3$ with P_1 is \oplus-supplemented and $\text{Rad}(P_1) = \mathbb{Z}(P_1)$, P_2 is semisimple and $\mathbb{Z}(P_3) = P_3$.

Proof. (1) \Rightarrow (2) By the proof of [14] Corollary 4.3 and since every semiperfect is \oplus-supplemented.

(2) \Rightarrow (1) By [14] Corollary 4.3 all P_1, P_2 and P_3 are \mathbb{Z}-semiperfect and hence $\mathbb{Z}\oplus$-supplemented. Since any finite direct sum of $\mathbb{Z}\oplus$-supplemented modules is $\mathbb{Z}\oplus$-supplemented, P is $\mathbb{Z}\oplus$-supplemented.

Let $e = e^2 \in R$. Then e is called a left (right) semicentral idempotent if $xe = exe$ (ex = exe), for all $x \in R$. The set of all left (right) semicentral idempotents is denoted by $S_l(R)$ ($S_r(R)$). A ring R is called Abelian if every idempotent is central.

Let M be a module. We consider the following condition.

(D_3) If M_1 and M_2 are direct summands of M with $M = M_1 + M_2$, then $M_1 \cap M_2$ is also a direct summand of M.

By [14] Lemma 4.6 and Proposition 4.38, every quasi-projective module is (D_3).

Proposition 1.20. Let M be an R-module such that $\text{End}(M)$ is Abelian and $X \subseteq M$ implies $X = \sum_{i \in I} h_i(M)$ where $h_i \in \text{End}(M)$. Then for any preradical τ, M is τ-\oplus-supplemented if and only if M is τ-lifting and has (D_3)-condition.

Proof. The sufficiency is obvious. Conversely, let $X \subseteq M$, $X = \sum_{i \in I} h_i(M)$ with $h_i(M) \in \text{End}(M)$. Since M is $\tau\oplus$-supplemented, there exists a direct summand eM such that $X + eM = M$ and $(X \cap eM) \subseteq \tau(eM)$ for some $e^2 = e \in \text{End}(M)$.

Since $\text{End}(M)$ is Abelian, $(1-e)X = (1-e)M = (1-e)\sum_{i \in I} h_i(M) = \sum_{i \in I} h_i(1-e)(M) \subseteq X$. Therefore $X = (1-e)M \oplus (X \cap eM)$. Hence M is τ-lifting. If $eM + fM = M$ for $e^2 = e$, $f^2 = f \in \text{End}(M)$, then $eM \cap fM = efM$ with $(ef)^2 = ef$. So M has (D_3)-condition.

Recall that an R-module M is said to be a multiplication module if for each $X \subseteq M$ there exists $A_M \subseteq RR$ such that $X = MA$.

Corollary 1.21. If M satisfies one of the following conditions, then M is τ-lifting if and only if M is $\tau\oplus$-supplemented for any preradical τ.

1. M is cyclic and R is commutative.
2. M is a multiplication module and R is commutative.

Proof. (1) Assume that M is cyclic and R is commutative. There exists $B_R \subseteq RR$ such that $M \cong R/B$. Let $Y/B \subseteq R/B$, $Y/B = \sum_{i \in I} (y_i + B) = \sum_{i \in I} y_i R + B$ where each $y_i \in Y$. Define $h_i : R/B \to R/B$ by $h_i(r + B) = y_i r + B$, $i \in I$. Then it is easy to check that $h_i \in \text{End}_R(R/B)$. Hence $Y/B = \sum_{i \in I} h_i(R/B)$. Since R is commutative, $\text{End}_R(R/B)$ is also commutative. By Proposition 1.13, M is τ-lifting.

(2) Assume M is a multiplication module. Let $X \subseteq M$. Then $X = MA$ for some $A_M \subseteq RR$. For each $a \in A$, define $h_a : M \to M$ by $h_a(m) = ma$ for all $m \in M$. Then h_a is an R-homomorphism and $X = MA = \sum_{a \in A} h_a(M)$. Since every multiplication module is a duo module, thus if $e^2 = e \in S = \text{End}(M)$, then e,
ON τ-\\oplus-SUPPLEMENTED MODULES

$1 - e \in S_i(S)$. Therefore e is central. So $End(M)$ is Abelian. Again by Proposition 1.20 M is τ-lifting.

\square

2. Completely τ-\\oplus-Supplemented Modules

Definition 2.1. For any preradical τ, we call a module M **completely τ-\\oplus-supplemented** for any preradical τ if every direct summand of M is a τ-\\oplus-supplemented.

Theorem 2.2. Let M be a module with (D_3) and τ a preradical. Then M is τ-\\oplus-supplemented if and only if M is completely τ-\\oplus-supplemented.

Proof. Sufficiency is clear. Conversely, assume that M is τ-\\oplus-supplemented and K a direct summand of M and A a submodule of K. We show A has a τ-supplement in K that is a direct summand of K. Since M is τ-\\oplus-supplemented, there exists a direct summand B of M such that $M = A + B$ and $A \cap B \subseteq \tau(B)$. Then $K = A + (K \cap B)$. Furthermore $K \cap B$ is a direct summand of M because M has (D_3). Then $A \cap (K \cap B) = (A \cap B) \cap (K \cap B) \subseteq \tau(B) \cap (K \cap B) = \tau(K \cap B)$. \square

A submodule K of M is called **essential in M** (notation $K \leq_e M$) if $K \cap A \neq 0$ for any nonzero submodule A of M.

Proposition 2.3. Let M be a τ-supplemented module for any preradical τ. Then $M = M_1 \oplus M_2$, where M_1 is semisimple module and M_2 is a module with $\tau(M_2)$ essential in M_2.

Proof. See [2, 2.2]. \square

Recall that a module M has the **Summand Sum Property** (SSP) if the sum of any two direct summands of M is again a direct summand.

Theorem 2.4. (1) Every τ-lifting module is completely τ-\\oplus-supplemented for any preradical τ.

(2) Let M be a τ-\\oplus-supplemented module for any preradical τ. If M has the (SSP), then M is completely τ-\\oplus-supplemented.

Proof. (1) By [2, 2.10] every direct summand of a τ-lifting module is τ-lifting. The rest is clear.

(2) Assume that M is τ-\\oplus-supplemented and M has the (SSP). Let N be a direct summand of M. We will show that N is τ-\\oplus-supplemented. Let $M = N \oplus N'$ for some submodule N' of M. Suppose that A is a direct summand of M. Since M has the (SSP), $A + N'$ is a direct summand of M. Let $M = (A + N') \oplus B$ for some $B \leq M$. Then $M/N' = (A + N')/N' \oplus (B + N')/N'$. Hence by Theorem 1.5 M/N' is τ-\\oplus-supplemented and so N is τ-\\oplus-supplemented. \square

We give a decomposition of any τ-\\oplus-supplemented (D_3)-module by the second singular submodule $Z_2(M)$ of M. We will show that if M is τ-\\oplus-supplemented and $N \leq M$ with M/N projective, then N is τ-\\oplus-supplemented.

Recall that the **singular submodule $Z(M)$** of a module M is defined by $Z(M) = \{ m \in M \mid mE = 0, E \leq_e R \}$.

The **Goldie torsion submodule (or second singular submodule)** $Z_2(M)$ of M is a submodule of M containing $Z(M)$ such that $Z_2(M)/Z(M)$ is the singular submodule of $M/Z(M)$.
Proposition 2.5. Let M be a module with (D_3). Suppose that $Z_2(M)$ is τ-co-closed in M. Then for any preradical τ, M is τ-\oplus-supplemented if and only if $M = Z_2(M) \oplus K$ for some submodule K of M and, $Z_2(M)$ and K are τ-\oplus-supplemented.

Proof. Sufficiency is clear by Theorem 1.2 Conversely, assume that M is τ-\oplus-supplemented. There exist submodules K and K' of M such that $M = K \oplus K' = Z_2(M) + K$ and $Z_2(M) \cap K \subseteq \tau(K)$. Now $Z_2(M) = Z_2(K) \oplus Z_2(K')$. Thus, $M = K \oplus Z_2(K')$ and hence $Z_2(K') = K'$. Note that $Z_2(M) \cap K = Z_2(K) \subseteq \tau(K)$. So, we can obtain that $Z_2(M)/K' \subseteq \tau(M/K')$. Therefore, $Z_2(M) = K'$ because $Z_2(M)$ is τ-co-closed in M. So, $M = K \oplus Z_2(M)$. Clearly K and $Z_2(M)$ are τ-\oplus-supplemented.

Proposition 2.6. Let M be a τ-supplemented module for any preradical τ. Then $M = M_1 \oplus M_2$, where M_1 is semisimple module and M_2 is a module with $\tau(M_2)$ essential in M_2.

Proof. See [2, 2.2].

Corollary 2.7. Let M be a τ-\oplus-supplemented module for any preradical τ. Then $M = M_1 \oplus M_2$ where M_1 is a semisimple module and M_2 is a module with $\tau(M_2)$ essential in M_2.

Proof. Since each τ-\oplus-supplemented module is τ-supplemented the result follows from Proposition 2.6.

Proposition 2.8. Let M be a τ-\oplus-supplemented module for a left exact preradical τ. Then $M = M_1 \oplus M_2$ such that $\tau(M_2) = M_2$.

Proof. Suppose that M is a τ-\oplus-supplemented module. There exists a direct summand M_1 of M such that $M = M_1 + \tau(M)$ and $M_1 \cap \tau(M) = \tau(M_1)$ since τ is a left exact preradical and $M = M_1 \oplus M_2$ for some submodule M_2 of M. Then $M = \tau(M_2) \oplus M_1$. Thus $M_2 = \tau(M_2)$.

Theorem 2.9. For module M with (D_3) and a left exact preradical τ the following statements are equivalent:

1. M is completely τ-\oplus-supplemented;
2. M is τ-\oplus-supplemented;
3. $M = M_1 \oplus M_2$, where M_1 is semisimple module and M_2 is a τ-\oplus-supplemented module with $\tau(M_2)$ essential in M_2;
4. $M = M_1 \oplus M_2$ such that M_1 is a τ-\oplus-supplemented module and M_2 is a τ-\oplus-supplemented module with $\tau(M_2) = M_2$.

Proof. (1) \Rightarrow (2) Clear from definition.

(2) \Rightarrow (1) It follows from Theorem 2.2.

(1) \Rightarrow (3) By Proposition 2.6, $M = M_1 \oplus M_2$, where M_1 is semisimple module and M_2 is module with $\tau(M_2)$ essential in M_2. By (1), M_2 is τ-\oplus-supplemented.

(1) \Rightarrow (4) By Proposition 2.8, $M = M_1 \oplus M_2$ such that $\tau(M_2) = M_2$ and M_1, M_2 are τ-\oplus-supplemented by (1).

(3) \Rightarrow (2), (4) \Rightarrow (2) follows by Theorem 1.2.

Lemma 2.10. Let M be an indecomposable module. Then for any preradical τ, M is completely torsion if and only if M is completely τ-\oplus-supplemented.

Proof. Clear.
Proposition 2.11. Let $M = M_1 \oplus M_2$ such that M_1 and M_2 have local endomorphism rings. Then for any preradical τ, M is completely τ-\oplus-supplemented if and only if M_1 and M_2 are completely torsion modules.

Proof. The necessity is clear from Lemma 2.10. Conversely, let K be a direct summand of M. If $K = M$ then by Corollary 2.3 K is τ-\oplus-supplemented. Assume $K \neq M$. Then either $K \cong M_1$ or $K \cong M_2$ by Corollary 12.7. In either case K is τ-\oplus-supplemented. Thus M is completely τ-\oplus-supplemented. \square

References

Y. Talebi, Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
E-mail address: talebi@umz.ac.ir

T. Amoozegar, Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
E-mail address: t.amoozegar@umz.ac.ir

A. R. Moniri Hamzekolaei, Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
E-mail address: a.monirih@umz.ac.ir