ALBANIAN JOURNAL OF MATHEMATICS Volume 2, Number 4, Pages 307–318 ISSN 1930-1235: (2008)

DEGREE 4 COVERINGS OF ELLIPTIC CURVES BY GENUS 2 CURVES

T. Shaska, G.S. Wijesiri

Department of Mathematics Oakland University Rochester, MI, 48309-4485.

S. Wolf

Department of Mathematics Cornell University Ithaca, NY 14853-4201.

L. WOODLAND

Department of Mathematics & Computer Science Westminster College 501 Westminster Avenue Fulton MO 65251-1299.

ABSTRACT. Genus two curves covering elliptic curves have been the object of study of many articles. For a fixed degree n the subloci of the moduli space \mathcal{M}_2 of curves having a degree n elliptic subcover has been computed for n = 3, 5 and discussed in detail for n odd; see [17, 22, 3, 4]. When the degree of the cover is even the case in general has been treated in [16]. In this paper we compute the sublocus of \mathcal{M}_2 of curves having a degree 4 elliptic subcover.

1. INTRODUCTION

Let $\psi : C \to E$ be a degree *n* covering of an elliptic curve *E* by a genus two curve *C*. Let $\pi_C : C \longrightarrow \mathbb{P}^1$ and $\pi_E : E \longrightarrow \mathbb{P}^1$ be the natural degree 2 projections. There is $\phi : \mathbb{P}^1 \longrightarrow \mathbb{P}^1$ such that the diagram commutes.

(1)
$$\begin{array}{ccc} C & \xrightarrow{\pi_C} & \mathbb{P}^1 \\ \psi \downarrow & & \downarrow \phi \\ E & \xrightarrow{\pi_E} & \mathbb{P}^1 \end{array}$$

The ramification of induced coverings $\phi : \mathbb{P}^1 \longrightarrow \mathbb{P}^1$ can be determined in detail; see [16] for details. Let σ denote the fixed ramification of $\phi : \mathbb{P}^1 \longrightarrow \mathbb{P}^1$. The Hurwitz space of such covers is denoted by $\mathcal{H}(\sigma)$. For each covering $\phi : \mathbb{P}^1 \longrightarrow \mathbb{P}^1$ (up to equivalence) there is a unique genus two curve C (up to isomorphism). Hence, we

©2008 Aulona Press (Albanian J. Math.)

have a map

(2)
$$\begin{split} \Phi: \ \mathcal{H}(\sigma) \to \mathcal{M}_2 \\ [\phi] \to [C]. \end{split}$$

We denote by $\mathcal{L}_n(\sigma)$ the image of $\mathcal{H}(\sigma)$ under this map. The main goal of this paper is to study $\mathcal{L}_4(\sigma)$.

2. Preliminaries

Most of the material of this section can be found in [23]. Let C and E be curves of genus 2 and 1, respectively. Both are smooth, projective curves defined over k, char(k) = 0. Let $\psi : C \longrightarrow E$ be a covering of degree n. From the Riemann-Hurwitz formula, $\sum_{P \in C} (e_{\psi}(P) - 1) = 2$ where $e_{\psi}(P)$ is the ramification index of points $P \in C$, under ψ . Thus, we have two points of ramification index 2 or one point of ramification index 3. The two points of ramification index 2 can be in the same fiber or in different fibers. Therefore, we have the following cases of the covering ψ :

Case I: There are $P_1, P_2 \in C$, such that $e_{\psi}(P_1) = e_{\psi}(P_2) = 2, \ \psi(P_1) \neq \psi(P_2)$, and $\forall P \in C \setminus \{P_1, P_2\}, \ e_{\psi}(P) = 1$.

Case II: There are $P_1, P_2 \in C$, such that $e_{\psi}(P_1) = e_{\psi}(P_2) = 2, \ \psi(P_1) = \psi(P_2)$, and $\forall P \in C \setminus \{P_1, P_2\}, \ e_{\psi}(P) = 1$.

Case III: There is $P_1 \in C$ such that $e_{\psi}(P_1) = 3$, and $\forall P \in C \setminus \{P_1\}, e_{\psi}(P) = 1$.

In case I (resp. II, III) the cover ψ has 2 (resp. 1) branch points in E.

Denote the hyperelliptic involution of C by w. We choose \mathcal{O} in E such that w restricted to E is the hyperelliptic involution on E. We denote the restriction of w on E by v, v(P) = -P. Thus, $\psi \circ w = v \circ \psi$. E[2] denotes the group of 2-torsion points of the elliptic curve E, which are the points fixed by v. The proof of the following two lemmas is straightforward and will be omitted.

Lemma 1. a) If $Q \in E$, then $\forall P \in \psi^{-1}(Q)$, $w(P) \in \psi^{-1}(-Q)$. b) For all $P \in C$, $e_{\psi}(P) = e_{\psi}(w(P))$.

Let W be the set of points in C fixed by w. Every curve of genus 2 is given, up to isomorphism, by a binary sextic, so there are 6 points fixed by the hyperelliptic involution w, namely the Weierstrass points of C. The following lemma determines the distribution of the Weierstrass points in fibers of 2-torsion points.

Lemma 2. The following hold:

(1) $\psi(W) \subset E[2]$

(2) If n is an even number then for all $Q \in E[2]$, $\#(\psi^{-1}(Q) \cap W) = 0 \mod (2)$

Let $\pi_C : C \longrightarrow \mathbb{P}^1$ and $\pi_E : E \longrightarrow \mathbb{P}^1$ be the natural degree 2 projections. The hyperelliptic involution permutes the points in the fibers of π_C and π_E . The ramified points of π_C , π_E are respectively points in W and E[2] and their ramification index is 2. There is $\phi : \mathbb{P}^1 \longrightarrow \mathbb{P}^1$ such that the diagram commutes.

(3)
$$\begin{array}{ccc} C & \xrightarrow{\pi_C} & \mathbb{P}^1 \\ \psi \downarrow & & \downarrow \phi \\ E & \xrightarrow{\pi_E} & \mathbb{P}^1 \end{array}$$

Next, we will determine the ramification of induced coverings $\phi : \mathbb{P}^1 \longrightarrow \mathbb{P}^1$. First we fix some notation. For a given branch point we will denote the ramification of points in its fiber as follows. Any point P of ramification index m is denoted by (m). If there are k such points then we write $(m)^k$. We omit writing symbols for unramified points, in other words $(1)^k$ will not be written. Ramification data between two branch points will be separated by commas. We denote by $\pi_E(E[2]) = \{q_1, \ldots, q_4\}$ and $\pi_C(W) = \{w_1, \ldots, w_6\}$.

Let us assume now that $deg(\psi) = n$ is an even number. Then the generic case for $\psi: C \longrightarrow E$ induce the following three cases for $\phi: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$:

$$\mathbf{I:} \left((2)^{\frac{n-2}{2}}, (2)^{\frac{n-2}{2}}, (2)^{\frac{n-2}{2}}, (2)^{\frac{n}{2}}, (2) \right) \\
\mathbf{II:} \left((2)^{\frac{n-4}{2}}, (2)^{\frac{n-2}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2) \right) \\
\mathbf{III:} \left((2)^{\frac{n-6}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2) \right)$$

Each of the above cases has the following degenerations (two of the branch points collapse to one)

$$\begin{aligned} \mathbf{I:} \quad (1) \quad \left((2)^{\frac{n}{2}}, (2)^{\frac{n-2}{2}}, (2)^{\frac{n-2}{2}}, (2)^{\frac{n}{2}} \right) \\ (2) \quad \left((2)^{\frac{n-2}{2}}, (2)^{\frac{n-2}{2}}, (4)(2)^{\frac{n-6}{2}}, (2)^{\frac{n}{2}} \right) \\ (3) \quad \left((2)^{\frac{n-2}{2}}, (2)^{\frac{n-2}{2}}, (2)^{\frac{n-2}{2}}, (4)(2)^{\frac{n-4}{2}} \right) \\ (4) \quad \left((3)(2)^{\frac{n-4}{2}}, (2)^{\frac{n-2}{2}}, (2)^{\frac{n-2}{2}}, (2)^{\frac{n}{2}} \right) \\ \mathbf{II:} \quad (1) \quad \left((2)^{\frac{n-2}{2}}, (2)^{\frac{n-2}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (2) \quad \left((2)^{\frac{n-4}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (3) \quad \left((4)(2)^{\frac{n-8}{2}}, (2)^{\frac{n-2}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (4) \quad \left((2)^{\frac{n-4}{2}}, (4)(2)^{\frac{n-6}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (5) \quad \left((2)^{\frac{n-4}{2}}, (2)^{\frac{n-2}{2}}, (2)^{\frac{n-4}{2}}, (2)^{\frac{n}{2}} \right) \\ (6) \quad \left((3)(2)^{\frac{n-6}{2}}, (2)^{\frac{n-2}{2}}, (4)(2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (7) \quad \left((2)^{\frac{n-4}{2}}, (3)(2)^{\frac{n-4}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (1) \quad \left((2)^{\frac{n-4}{2}}, (2)^{\frac{n-2}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (2) \quad \left((2)^{\frac{n-4}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (3) \quad \left((2)^{\frac{n-4}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (4) \quad \left((3)(2)^{\frac{n-4}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (4) \quad \left((3)(2)^{\frac{n-8}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (4) \quad \left((3)(2)^{\frac{n-8}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (5) \quad (5)^{\frac{n-4}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (5) \quad \left((3)^{\frac{n-4}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (5) \quad \left((2)^{\frac{n-4}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (7) \quad \left((2)^{\frac{n-4}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (7) \quad \left((2)^{\frac{n-4}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (7) \quad \left((2)^{\frac{n-4}{2}}, (2)^{\frac{n}{2}}, (2)^{\frac{n}{2}} \right) \\ (7) \quad \left((2)^$$

For details see [16].

3. Degree 4 case

In this section we focus on the case $\deg(\phi) = 4$. The goal is to determine all ramifications σ and explicitly compute $\mathcal{L}_4(\sigma)$.

There is one generic case and one degenerate case in which the ramification of $deg(\phi) = 4$ applies, as given by the above possible ramification structures:

- i) $(2, 2, 2, 2^2, 2)$ (generic)
- ii) (2, 2, 2, 4) (degenerate)

4. Computing the locus \mathcal{L}_4 in \mathcal{M}_2

4.1. Non-degenerate case. Let $\psi : C \longrightarrow E$ be a covering of degree 4, where C is a genus 2 curve and E is an elliptic curve. Let ϕ be the Frey-Kani covering with $deg(\phi) = 4$ such that $\phi(1) = 0$, $\phi(\infty) = \infty$, $\phi(p) = \infty$ and the roots of $f(x) = x^2 + ax + b$ be in the fiber of 0. In the following figure, bullets (resp., circles) represent places of ramification index 2 (resp., 1).

FIGURE 1. Degree 4 covering for generic case

Then the cover can be given by

$$\phi(x) = \frac{k(x-1)^2(x^2+b)}{(x-p)^2}.$$

Let λ be a 2-torsion point of E. To find λ , we solve

(4)
$$\phi(x) - \lambda = 0.$$

According to this ramification we should have 3 solutions for λ , say $\lambda_1, \lambda_2, \lambda_3$. The discriminant of the Eq. (4) gives branch points for the points with ramification index 2. So we have the following relation for λ , with $p \neq 1$.

$$(-b - p^2) \lambda^3 + (2 k p^2 - 18 k b p + 16 k p^4 - 16 k p^3 + 3 k b^2 + 3 k b + 20 k b p^2) \lambda^2$$

$$(5) + (-3 k^2 b + 21 k^2 b^2 - 36 k^2 b^2 p - 3 k^2 b^3 - 20 k^2 b p^2 + 8 k^2 b^2 p^2 + 18 k^2 b p$$

$$- k^2 p^2) \lambda + k^3 b + k^3 b^4 + 3 k^3 b^2 + 3 k^3 b^3 = 0.$$

Using Eq.(4) and Eq.(5) we find the degree 12 equation with 2 factors. One of them with degree 6 corresponds to the equation of genus 2 curve and the other corresponds to the double roots in the fiber of λ_1 , λ_2 and λ_3 .

The equation of genus 2 curve can be written as follows:

$$C: y^2 = a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

where

$$\begin{aligned} a_{6} &= p^{2} + b \\ a_{5} &= 4 p^{3} - 6 p^{2} + 4 p b - 6 b \\ a_{4} &= -4 p^{4} - 10 p^{3} + (-5 b + 13) p^{2} - 8 p b + 12 b \\ a_{3} &= 12 p^{4} + (4 + 6 b) p^{3} + (-12 + 12 b) p^{2} + (8 b^{2} - 6 b) p - 8 b - 8 b^{2} \\ a_{2} &= (-11 - 4 b) p^{4} + (-20 b + 6) p^{3} + (4 + 13 b - 12 b^{2}) p^{2} + 10 p b + 12 b^{2} \\ a_{1} &= (14 b + 2) p^{4} + (6 b^{2} - 4 + 4 b) p^{3} + (-24 b + 6 b^{2}) p^{2} + (-6 b^{2} + 4 b) p - 6 b^{2} \\ a_{0} &= (-b^{2} + 1 - 11 b) p^{4} + (14 b - 2 b^{2}) p^{3} - 2 b p^{2} + 2 b^{2} p + b^{2}. \end{aligned}$$

Notice that we write the equation of genus 2 curve in terms of only 2 unknowns. We denote the Igusa invariants of C by J_2, J_4, J_6 , and J_{10} . The absolute invariants of C are given in terms of these classical invariants:

$$i_1 = 144 \frac{J_4}{J_2^2}, \quad i_2 = -1728 \frac{J_2 J_4 - 3 J_6}{J_2^3}, \quad i_3 = 486 \frac{J_{10}}{J_2^5}$$

Two genus 2 curves with $J_2 \neq 0$ are isomorphic if and only if they have the same absolute invariants. Notice that these invariants of our genus 2 curve are polynomials in p and b. By using a computational symbolic package (as Maple) we eliminate p and b to determine the equation for the non-degenerate locus \mathcal{L}_4 . The result is very long. We don't display it here.

5. Degenerate Case

Notice that only one degenerate case can occur when n = 4: (2, 2, 2, 4). In this case one of the Weierstrass points has ramification index 3, so the cover is totally ramified at this point.

Let the branch points be 0, 1, λ , and ∞ , where ∞ corresponds to the element of index 4. Then, above the fibers of 0, 1, λ lie two Weierstrass points. The two Weierstrass points above 0 can be written as the roots of a quadratic polynomial $x^2 + ax + b$; above 1, they are the roots of $x^2 + px + q$; and above λ , they are the roots of $x^2 + sx + t$. This gives us an equation for the genus 2 curve C:

$$C: y^{2} = (x^{2} + ax + b)(x^{2} + px + q)(x^{2} + sx + t).$$

The four branch points of the cover ϕ are the 2-torsion points E[2] of the elliptic curve E, allowing us to write the elliptic subcover as

$$E: y^2 = x(x-1)(x-\lambda).$$

The cover $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ is Frey-Kani covering and is given by

$$\phi(x) = cx^2(x^2 + ax + b)$$

Using $\phi(1) = 1$, we get $c = \frac{1}{1+a+b}$. Then,

$$\phi(x) - 1 = c(x - 1)^2 (x^2 + px + q).$$

This implies that $\phi'(1) = 0$, so we get c(4 + 3a + 2b) = 0. Since c cannot be 0, we must have 4 + 3a + 2b = 0, which implies $a = \frac{-2(b+2)}{3}$. Combining this with our equation for c, we get $c = \frac{3}{b-1}$.

Now, since $\phi(x) - 1 - c(x-1)^2(x^2 + px + q) = 0$, we want all of the coefficients of this polynomial to be identically 0; thus

$$p = \frac{2(1-b)}{3}, q = \frac{1-b}{3}.$$

Finally, we consider the fiber above λ . We write

$$\phi(x) - \lambda = c(x - r)^2(x^2 + sx + t)$$

Similar to above, we set the coefficients of the polynomial to 0 to get:

$$\lambda = \frac{b^3(4-b)}{16(b-1)}, \quad r = \frac{b}{2}, \quad s = \frac{b-4}{3}, \quad t = \frac{b(b-4)}{12}.$$

Hence we have C and E with equations:

$$C: \quad y^2 = \left(\frac{1-b}{3} + \frac{2}{3}(1-b)x + x^2\right) \left(\frac{1}{12}(b-4)b + \frac{1}{3}(b-4)x + x^2\right)$$
(6)
$$\left(b - \frac{2}{3}(b+2)x + x^2\right)$$

$$E: \quad v^2 = u(u-1)\left(u - \frac{b^3(4-b)}{16(b-1)}\right)$$

where the corresponding discriminants of the right sides must be non-zero. Hence,

(7)
$$\Delta_C := b(b-4)(b-2)(b-1)(2+b) \neq 0$$

(8)
$$\Delta_E := \frac{(b-4)^2(b-2)^6b^6(b+2)^2}{65536(b-1)^4} \neq 0.$$

From here on, we consider the additional restriction on b that it does not solve $J_2 = 0$, that is,

(9)
$$J_2 = -\frac{5}{486}(256 - 384b - 4908b^2 + 5068b^3 - 1227b^4 - 24b^5 + 4b^6) \neq 0.$$

The case when $J_2 = 0$ is considered separately. We can eliminate *b* from this system of equations by taking the numerators of $i_j - i_j(b)$ and setting them equal to 0, where i_j are absolute invariants of genus 2 curve.

Thus, we have 3 polynomials in b, i_1, i_2, i_3 . We eliminate b using the method of resultants and get the following:

$$3652054494822999 - 312800728170302145i_1 - 247728254774362875i_1^2$$
(10) +3039113062253125i_1^3 - 522534367747902600i_2 - 28017734537115000i_1i_2

 $-238234372300000i_2^2 = 0$

and the other equation

(11)

 $1158391804615233525i_1 - 17653298856896250i_1^2 + 100894442906250i_1^3$

 $-256292578125i_1^4 + 244140625i_1^5 - 323890167989102732668800000i_3$

 $-1487967222528890496000000 i_1 i_3 - 4060943110225800000000 i_1^2 i_3$

 $-16677181699666569 + 34740536191835839686144000000000i_3^2 = 0$

These equations determine the degenerate locus \mathcal{L}'_4 when $J_2 \neq 0$.

When $J_2 = 0$, we must resort to the *a*-invariants of the genus 2 curve. These invariants are defined as

$$a_1 = \frac{J_4 J_6}{J_{10}}, \qquad a_2 = \frac{J_{10} J_6}{J_4^4}.$$

Two genus 2 curves with $J_2 = 0$ are isomorphic iff their *a*-invariants are equal. For our genus 2 curve,

$$J_4 = \frac{1}{5184} \left(65536 - 196608b - 307200b^2 + 1218560b^3 - 834288b^4 - 294432b^5 + 456600b^6 - 73608b^7 - 52143b^8 + 19040b^9 - 1200b^{10} - 192b^{11} + 16b^{12} \right)$$

4

It can be guarantee that J_4 and J_2 are not simultaneously 0 because the resultant of these two polynomials in b is

$$\frac{1178497805152239570764667289600000000000}{42391158275216203514294433201}$$

so there are no more subcases. We want to eliminate b from the set of equations:

$$J_2 = 0$$

 $a_1 - a_1(b) = 0$
 $a_2 - a_2(b) = 0.$

Similar to what we did above with the i-invariants, we take resultants of combinations of these and set them equal to 0. Doing so tells us

$$20a_1 - 55476394831 = 0$$

1022825924657928a_2 - 522665 = 0.

So in other words, if C is a genus 2 curve with a degree 4 elliptic subcover with $J_2 = 0$, then

$$a_1 = \frac{55476394831}{20}, \quad a_2 = \frac{522665}{1022825924657928}$$

So up to isomorphism, this is the only genus 2 curve with degree 4 elliptic subcover with $J_2 = 0$. In this case the equation of the genus 2 curve is given by Eq.(6), where b is given by the following:

(12)
$$b = \frac{2\alpha + \sqrt{429\alpha^2 + 60123\alpha + \beta}}{2\alpha}$$

with $\alpha = \sqrt[3]{2837051 + 9408 i\sqrt{5}}$ and $\beta = 8511153 + 28224 i\sqrt{5}$. We summarize the above results in the following theorem.

Theorem 1. Let C be a genus 2 curve with a degree 4 degenerate elliptic subcover. Then C is isomorphic to the curve given by Eq.(6) where b satisfies Eq.(12) or its absolute invariants satisfy Eq.(10) and Eq.(11).

Remark 1. The genus 2 curve, when $J_2 = 0$, is not defined over the rational.

Remark 2. When the genus 2 curve has non zero J_2 invariant the j invariant of the elliptic curve satisfies the following equation:

 $0 = (262144000000000 J_4{}^4 - 14332985344000000 J_2{}^2 J_4{}^3 - 15871355368243200 J_2{}^6 J_4$

- $+\,1586874322944\,{J_2}^8+26122821304320000\,{J_2}^4{J_4}^2)j^2+(-2535107603331605760\,{J_2}^8$
- $+\ 25102192337335536076800\ {J_2}^6 J_4 164781024264192000000000\ {J_4}^4$
- $+ 90675809529498685440000 J_2{}^4 J_4{}^2 363163522083397632000000 J_2{}^2 J_4{}^3) j$
- $+\ 2589491458659766450406400000000 \ J_4 \ ^4 203482361042468209670400000000 \ J_2 \ ^2 J_4 \ ^3$
- $+\ 39862710766802552045625\ {J_2}^8 19433806326190741141800000\ {J_2}^6 J_4$

 $+ 3259543004362746907416000000 J_2^4 J_4^2.$

5.1. Genus 2 curves with degree 4 elliptic subcovers and extra automorphisms in the degenerate locus of \mathcal{L}_4 . In any characteristic different from 2, the automorphism group Aut(C) is isomorphic to one of the groups : C_2, C_{10}, V_4 , $D_8, D_{12}, C_3 \rtimes D_8, GF_2(3), \text{ or } 2^+S_5; \text{ See } [21] \text{ for the description of each group. We}$ have the following lemma.

(a) The locus \mathcal{L}_2 of genus 2 curves C which have a degree 2 elliptic Lemma 3. subcover is a closed subvariety of \mathcal{M}_2 . The equation of \mathcal{L}_2 is given by

0 0

314

$$\begin{array}{l} 0 = 8748J_{10}J_{2}^{4}J_{6}^{2} - 507384000J_{10}^{2}J_{4}^{2}J_{2} - 19245600J_{10}^{2}J_{4}J_{2}^{3} - 592272J_{10}J_{4}^{4}J_{2}^{2} \\ + 77436J_{10}J_{4}^{3}J_{2}^{4} - 3499200J_{10}J_{2}J_{6}^{3} + 4743360J_{10}J_{4}^{3}J_{2}J_{6} - 870912J_{10}J_{4}^{2}J_{2}^{3}J_{6} \\ + 3090960J_{10}J_{4}J_{2}^{2}J_{6}^{2} - 78J_{2}^{5}J_{4}^{5} - 125971200000J_{10}^{3} - 81J_{2}^{3}J_{6}^{4} + 1332J_{2}^{4}J_{4}^{4}J_{6} \\ + 384J_{4}^{6}J_{6} + 41472J_{10}J_{4}^{5} + 159J_{4}^{6}J_{2}^{3} - 236196J_{10}^{2}J_{2}^{5} - 80J_{4}^{7}J_{2} - 47952J_{2}J_{4}J_{4}^{6} \\ + 104976000J_{10}^{2}J_{2}^{2}J_{6} - 1728J_{4}^{5}J_{2}^{2}J_{6} + 6048J_{4}^{4}J_{2}J_{6}^{2} - 9331200J_{10}J_{4}^{2}J_{6}^{2} - J_{2}^{7}J_{4}^{4} \\ + 12J_{2}^{6}J_{4}^{3}J_{6} + 29376J_{2}^{2}J_{4}^{2}J_{6}^{3} - 8910J_{2}^{3}J_{4}^{3}J_{6}^{2} - 2099520000J_{10}^{2}J_{4}J_{6} + 31104J_{6}^{5} \\ - 6912J_{4}^{3}J_{6}^{3} - 5832J_{10}J_{2}^{5}J_{4}J_{6} - 54J_{2}^{5}J_{4}^{2}J_{6}^{2} + 108J_{2}^{4}J_{4}J_{6}^{3} + 972J_{10}J_{2}^{6}J_{4}^{2}. \end{array}$$

(b) The locus $\mathcal{M}_2(D_8)$ of genus 2 curves C with $Aut(C) \equiv D_8$ is given by the equation of \mathcal{L}_2 and

(14)
$$0 = 1706J_4^2J_2^2 + 2560J_4^3 + 27J_4J_2^4 - 81J_2^3J_6 - 14880J_2J_4J_6 + 28800J_6^2.$$

(c) The locus
$$\mathcal{M}_2(D_{12})$$
 of genus 2 curves C with $Aut(C) \equiv D_{12}$ is

(15)
$$0 = -J_4 J_2^4 + 12 J_2^3 J_6 - 52 J_4^2 J_2^2 + 80 J_4^3 + 960 J_2 J_4 J_6 - 3600 J_6^2$$

(16)
$$0 = -864J_{10}J_2^5 + 3456000J_{10}J_4^2J_2 - 43200J_{10}J_4J_2^3 - 2332800000J_{10}^2 - J_4^2J_2^6 - 768J_4^4J_2^2 + 48J_4^3J_2^4 + 4096J_4^5.$$

We will refer to the locus of genus 2 curves C with $Aut(C) \equiv D_{12}$ (resp., $\operatorname{Aut}(C) \equiv D_8$) as the D_{12} -locus (resp., D_8 -locus).

Equations (10), (11), and (13) determine a system of 3 equations in the 3 iinvariants. The set of possible solutions to this system contains 20 rational points and 8 irrational or complex points (there may be more possible solutions, but finding them involves the difficult task of solving a degree 15 or higher polynomial).

Among the 20 rational solutions, there are four rational points which actually solve the system.

$$\begin{split} &(i_1, i_2, i_3) = \left(\frac{102789}{12005}, \frac{-73594737}{2941225}, \frac{531441}{28247524900000}\right) \\ &(i_1, i_2, i_3) = \left(\frac{66357}{9245}, \frac{-892323}{46225}, \frac{7776}{459401384375}\right) \\ &(i_1, i_2, i_3) = \left(\frac{235629}{1156805}, \frac{-28488591}{214008925}, \frac{53747712}{80459143207503125}\right) \\ &(i_1, i_2, i_3) = \left(\frac{1078818669}{383775605}, \frac{-77466710644803}{16811290377025}, \frac{1356226634181762}{161294078381836186878125}\right). \end{split}$$

Of these four points, only the first one lies on the D_{12} -locus, and none lie on the D_8 -locus, so the other three curves have automorphism groups isomorphic to V_4 (See Remark 3 for their equations). We have the following proposition.

Proposition 1. There is exactly one genus 2 curve C defined over \mathbb{Q} (up to C-isomorphism) with a degree 4 elliptic subcover which has an automorphism group D_{12} namely the curve

$$C = 100X^6 + 100X^3 + 27$$

and no such curves with automorphism group D_8 .

Proof. From above discussion there is exactly one rational point which lies on the D_{12} -locus and three rational points which lies on the V_4 -locus. Furthermore we have the fact that $\operatorname{Aut}(C) \equiv D_{12}$ if and only if C is isomorphic to the curve given by $Y^2 = X^6 + X^3 + t$ for some $t \in k$; see [19] for more details. Suppose the equation of the D_{12} case is $Y^2 = X^6 + X^3 + t$. We want to find t.

Suppose the equation of the D_{12} case is $Y^2 = X^6 + X^3 + t$. We want to find t. We can calculate the *i*-invariants in terms of t accordingly, so we get a system of equations, $i_j - i_j(t) = 0$ for $j \in \{1, 2, 3\}$. Those equations simplify to the following:

$$\begin{split} 0 &= 1600i_1t^2 - 80i_1t + i_1 - 6480t^2 - 1296t \\ 0 &= 64000i_2t^3 - 4800i_2t^2 + 120i_2t - i_2 + 233280t^3 + 303264t^2 - 11664t \\ 0 &= 1638400000i_3t^5 - 204800000i_3t^4 + 10240000i_3t^3 - 256000i_3t^2 \\ &+ 3200i_3t - 16i_3 + 729t^2 + 34992t^2 - 46656t^5 - 8748t^3. \end{split}$$

Replacing our i-invariants into the above system of equations we get:

$$\begin{split} 0 &= 86670000\,t^2 - 23781600\,t + 102789\\ 0 &= -4023934200000\,t^3 + 1245222396000\,t^2 - 43137816840\,t + 73594737\\ 0 &= -82315363050000000\,t^5 + 61770534511500000\,t^4 - 15443994116835000\,t^3\\ &+ 1287019350200250\,t^2 + 106288200\,t - 531441. \end{split}$$

There is only root those three polynomials share: $t = \frac{27}{100}$. Thus, there is exactly one genus 2 curve C defined over Q (up to Q-isomorphism) with a degree 4 elliptic subcover which has an automorphism group D_{12}

$$C: \quad y^2 = 100X^6 + 100X^3 + 27$$

Similarly, we show that there are no such curves with automorphism group D_8 . \Box

Remark 3. There are at least three genus 2 curves defined over \mathbb{Q} with automorphism group V_4 . The equations of these curves are given by the followings:

Case 1: $(i_1, i_2, i_3) = \left(\frac{66357}{9245}, \frac{-892323}{46225}, \frac{7776}{459401384375}\right)$

 $C: y^2 = 1432139730944 \, x^6 + 34271993769359360 \, x^5 + 267643983706245216000 \, x^4$

 $+\ 1267919172426862313120000 \, x^3 + 23945558970224886213835350000 \, x^2$

 $+\ 274330666162649153793599380475000\ x\ +\ 1025623291911204380755800513010015625.$

Case 2: $(i_1, i_2, i_3) = \left(\frac{235629}{1156805}, \frac{-28488591}{214008925}, \frac{53747712}{80459143207503125}\right)$

 $C: y^2 = 41871441565158964373437321767075023159296 x^6$

 $+ 156000358914872008908017177004915818496000 x^{5}$

 $+\,8994429753268252328699175313122263040000000\,x^4$

 $+ 17857537403821561579480053574533120000000000 x^{3}$

 $+\,775018151562516781352226536816640000000000000 \,x^2$

 $+\,1158249382368691011679236899376000000000000000 x$

 $+\ 26787527679468514273175655200959888458251953125.$

 $\textit{Case 3:} (i_1, i_2, i_3) = \left(\tfrac{1078818669}{383775605}, \tfrac{-77466710644803}{16811290377025}, \tfrac{1356226634181762}{161294078381836186878125} \right)$

 $C: y^2 = 9224408124038149308993379217084884661375653227720704 x^6$

 $+\ 3730758767668984877725129604888152322035364826481920000\ x^5$

 $+\ 1138523283803439912403861944281998092255345913017540000000 \, x^4$

 $+\ 18942504904778178462326189523859065867484120488345750000000 \ x^{3}$

 $+\ 76212520567614919095032412154382218443932939483817128906250000\ x^{2}$

 $+\ 16717294192073070547056921515101088692898208834624180908203125000\ x$

 $+\ 2766888989045448736067444316860942956954296161559210811614990234375.$

We summarize by the following:

Theorem 2. Let $\psi : C \to E$ be a degree 4 covering of an elliptic curve by a genus 2 curve. Then the following hold:

i) In the generic case the equation of C can be written as follows:

$$C: y^2 = a_6 x^6 + a_5 x^5 + \dots + a_1 x + a_0$$

where

$$\begin{aligned} a_{6} &= p^{2} + b \\ a_{5} &= 4p^{3} - 6p^{2} + 4pb - 6b \\ a_{4} &= -4p^{4} - 10p^{3} + (-5b + 13)p^{2} - 8pb + 12b \\ a_{3} &= 12p^{4} + (4 + 6b)p^{3} + (-12 + 12b)p^{2} + (8b^{2} - 6b)p - 8b - 8b^{2} \\ a_{2} &= (-11 - 4b)p^{4} + (-20b + 6)p^{3} + (4 + 13b - 12b^{2})p^{2} + 10pb + 12b^{2} \\ a_{1} &= (14b + 2)p^{4} + (6b^{2} - 4 + 4b)p^{3} + (-24b + 6b^{2})p^{2} + (-6b^{2} + 4b)p - 6b^{2} \\ a_{0} &= (-b^{2} + 1 - 11b)p^{4} + (14b - 2b^{2})p^{3} - 2bp^{2} + 2b^{2}p + b^{2}. \end{aligned}$$

ii) In the degenerate case the equation of \mathcal{L}'_4 is given by

 $1541086152812576000 \, {J_2}^2 {J_4}^2 - 22835312232360960000 \, J_2 \, J_4 \, J_6 + 5009676947631 \, {J_2}^6$

 $-8782271900467200000\,{J_{6}}^{2}+1176812184652746480\,{J_{2}}^{4}J_{4}+12448207102988800000\,{J_{4}}^{3}$

 $-3715799948429529600 J_2{}^3J_6 = 0$

 $1866265600000000 \, {J_2}^2 \, {J_4}^4 + 138962144767343358744576000000000 \, {J_{10}}^2 + 282429536481 \, {J_2}^{10} \\$

 $+ 6199238007360000 \, {J_2}^6 \, {J_4}^2 - 25600000000000 \, {J_4}^5 - 2824915237592400 \, {J_2}^8 \, {J_4}$

 $+ 2665762699498787923200000 J_2{}^5 J_{10} - 5102020224000000 J_2{}^4 J_4{}^3$

 $+ 693067624145203200000000 J_2 J_4{}^2 J_{10} + 17635167081823887360000000 J_2{}^3 J_4 J_{10} = 0$

iii) The intersection $\mathcal{L}'_4 \cap \mathcal{M}_2(D_8) = \emptyset$ and the intersection $\mathcal{L}'_4 \cap \mathcal{M}_2(D_{12})$ contains a single point, namely the curve

$$C: \quad y^2 = 100X^6 + 100X^3 + 27$$

References

- A. CLEBSCH, Theorie der Binären Algebraischen Formen, Verlag von B.G. Teubner, Leipzig, 1872.
- [2] I. DUURSMA AND N. KIYAVASH, The Vector Decomposition Problem for Elliptic and Hyperelliptic Curves, (preprint)
- G. FREY, On elliptic curves with isomorphic torsion structures and corresponding curves of genus 2. Elliptic curves, modular forms, and Fermat's last theorem (Hong Kong, 1993), 79-98, Ser. Number Theory, I, Internat. Press, Cambridge, MA, 1995.
- [4] G. FREY AND E. KANI, Curves of genus 2 covering elliptic curves and an arithmetic application. Arithmetic algebraic geometry (Texel, 1989), 153-176, Progr. Math., 89, Birkhäuser Boston, MA, 1991.
- [5] P. GAUDRY AND E. SCHOST, Invariants des quotients de la Jacobienne d'une courbe de genre 2, (in press)
- [6] G. VAN DER GEER, Hilbert modular surfaces, Springer, Berlin, 1987.
- [7] J. GUTIERREZ AND T. SHASKA, Hyperelliptic curves with extra involutions, LMS J. of Comput. Math., 8 (2005), 102-115.
- [8] G. HUMBERT Sur les fonctionnes abliennes singulires. I, II, III. J. Math. Pures Appl. serie 5, t. V, 233–350 (1899); t. VI, 279–386 (1900); t. VII, 97–123 (1901).
- [9] J. IGUSA, Arithmetic Variety Moduli for genus 2. Ann. of Math. (2), 72, 612-649, 1960.
- [10] C. JACOBI, Review of Legendre, Théorie des fonctions elliptiques. Troiseme supplém ent. 1832. J. reine angew. Math. 8, 413-417.
- [11] A. KRAZER, Lehrbuch der Thetafunctionen, Chelsea, New York, 1970.
- [12] V. KRISHNAMORTHY, T. SHASKA, H. VÖLKLEIN, Invariants of binary forms, Developments in Mathematics, Vol. 12, Springer 2005, pg. 101-122.
- [13] M. R. KUHN, Curves of genus 2 with split Jacobian. Trans. Amer. Math. Soc 307, 41-49, 1988.
- [14] K. MAGAARD, T. SHASKA, S. SHPECTOROV, AND H. VÖLKLEIN, The locus of curves with prescribed automorphism group. *Communications in arithmetic fundamental groups* (Kyoto, 1999/2001). Sürikaisekikenkyüsho Kökyüroku No. 1267 (2002), 112–141.
- [15] N. MURABAYASHI, The moduli space of curves of genus two covering elliptic curves. Manuscripta Math. 84 (1994), no. 2, 125–133.
- [16] N. PJERO, M. RAMOSAO, T. SHASKA, Genus two curves covering elliptic curves of even degree, Albanian J. Math. Vol. @, Nr. 3, 241-248.
- [17] T. SHASKA, Genus 2 curves with degree 3 elliptic subcovers, Forum. Math., vol. 16, 2, pg. 263-280, 2004.
- [18] T. SHASKA, Computational algebra and algebraic curves, ACM, SIGSAM Bulletin, Comm. Comp. Alg., Vol. 37, No. 4, 117-124, 2003.
- [19] T. SHASKA, Genus 2 curves with (3,3)-split Jacobian and large automorphism group, Algorithmic Number Theory (Sydney, 2002), 6, 205-218, *Lect. Not. in Comp. Sci.*, 2369, Springer, Berlin, 2002.

318 DEGREE 4 COVERINGS OF ELLIPTIC CURVES BY GENUS 2 CURVES

- [20] T. SHASKA, Curves of genus 2 with (n, n)-decomposable Jacobians, J. Symbolic Comput. 31 (2001), no. 5, 603–617.
- [21] T. SHASKA AND H. VÖLKLEIN, Elliptic subfields and automorphisms of genus two fields, Algebra, Arithmetic and Geometry with Applications, pg. 687 - 707, Springer (2004).
- [22] K. MAGAARD, T. SHASKA, H. VÖLKLEIN, Genus 2 curves with degree 5 elliptic subcovers, Forum Math. (to appear).
- [23] T. SHASKA, Genus two curves covering elliptic curves: a computational approach. Computational aspects of algebraic curves, 206–231, Lecture Notes Ser. Comput., 13, World Sci. Publ., Hackensack, NJ, 2005.