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ABSTRACT. This note gives an explicit proof that the scalar subgroup of the
Clifford-Weil group remains unchanged when passing to the quotient represen-
tation filling a gap in [3]. For other current and future errata to [3] see
http://www.research.att.com/~njas/doc/cliff2.html/.

1. INTRODUCTION

All notations in this paper are introduced in detail in [3] and we refer to this book
for their definitions. One main goal of the book is to introduce a unified language to
describe the Type of self-dual codes combining the different notions of self-duality
and Types, that are well established in coding theory. The Type of a code is a finite
representation p = (V, par, pa, ) of a finite form ring R = (R, M, ¢, ®). The finite
alphabet V is a left module for the ring R and the biadditive form 5 : V xV — Q/Z
defines the notion of duality. A code C of length N is then an R-submodule of VN
and the dual code is

N
Ct={wevV| Zﬂ(vi,ci) =0Vee C}.

=1
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Additional properties of codes of a given Type are encoded in the R-qmodule pg (P)
which is a certain subgroup of the group of quadratic mappings V' — Q/Z. A code
C < VN is isotropic, if C < C*+ and

N
> pa(¢)(ci) =0 forall ¢ € ® and for all c € C.
=1

Given a finite representation p, one associates a finite subgroup C(p) of GL(C[V]),
called the associated Clifford-Weil group (see Section 2). For certain finite form
rings (including direct products of matrix rings over finite Galois rings) it is shown
in [3, Theorem 5.5.7] that the ring of polynomial invariants of C(p) is spanned by the
complete weight-enumerators of self-dual isotropic codes of Type p. We conjecture
that this theorem holds for arbitrary finite form rings. It is shown in [3, Theorem
5.4.13, 5.5.3] that in general the order of the scalar subgroup

S(C(p)) = C(p) N C"idcpvy
is exactly the greatest common divisor of the lengths of self-dual isotropic codes of
Type p. The proof of this theorem uses the fact that the scalar subgroup of C(p)
remains unchanged when passing to the quotient representation. The aim of the
present note is to give a full proof of this statement, Theorem 1.
Throughout the note we fix an isotropic code ¢ < C+ < V in p. Then the
quotient representation p/C is defined by

p/c = (Cl/cﬁ pM/C’ IO‘P/C’ ﬁ/C),

where (par/C(m))(v + C,w + C) = pau(m) (v, w), (pa/C(¢))(v + C) = pa(¢)(v),
and 3/C(v+ C,w + C) = (v, w) for all v,w € C+,m € M, ¢ € ®.

Theorem 1. Let R = (R, M, ¢, ®) be a finite form-ring and let p = (V, pur, po, 5)
be a finite representation of R. Let C be an isotropic self-orthogonal code in p.
Then

S(C(p)) = S(C(p/C)).
2. CLIFFORD-WEIL GROUPS AND HYPERBOLIC COUNITARY GROUPS

The Clifford-Weil group C(p) associated to the finite representation p acts linearly
on the space C[V] with basis [b, : v € V]. It is generated by

My 2 by = by for r € R*
dg : by — exp(2mips (¢)(v))by for p € @
e u oo @ by — W > weer €XP2TiL(w, Vev)) byt (1) €2 = e € R symmetric.

Recall that the form-ring structure defines an involution “ on R. Then an idempo-
tent e € R is called symmetric, if eR and e’ R are isomorphic as right R-modules,
which means that there are u, € eRe”, v, € e’/ Re such that e = u,v, and e’ = vou,.

The Clifford-Weil group C(p) is a projective representation of the hyperbolic
counitary group

U(R, D) — U(( - ),Matz(R),CDQ).

The elements of U (R, ®) are of the form

(1) X((j §>,<¢1 Z;))eMatg(R)xcﬁz
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va 7B _ byl A1) m
a—-1 6§ 2 T(m) Ado2) ) -
A more detailed definition of U(R, ®) can be found in [3, Chapter 5.2].
It is shown in the book that U(R, ®) is generated by the elements

a((r, 8)) = (( T ) )( 0 0 ))

with r € R*,¢ € ® and

_ 1—e’ Ve 0 (—ee)
(2 ) (045

where e = uv, runs through the symmetric idempotents of R.
To formalize the proofs we let F(R, ®) denote the free group on

such that

{d(r,$), He o, v, | 7 € R*, ¢ € ®, € = uov, symmetric idempotent in R}.
On these generators there are two group epimorphism:
w1 F(R,®) = U(R, ®),d(r,¢) — d((r,$)), Heouo v, — Hepup v,
and

(2) p: F(R7 ‘I)) - C(p)7 di(”“? ¢) = m"”dds’ Hevuea'ue = hevuevve'

Theorem 2. p(ker(m)) C S(C(p)).
If p is faithful (i.e. Anng(V) =0 = ker(pe)), then p(ker(m)) = S(C(p)).

This is essentially [3, Theorem 5.3.2]. However the calculations there were omit-
ted so we take the opportunity to give them here for completeness (also since there
are a few typos in the proof there). Asin [3, Theorem 5.3.2] we define the associated
Heisenberg group £(V) :=V x V x Q/Z with multiplication

(z,2,0) - (.2, ) = (e + 2 2+ 7', g+ ¢ + B(2/, 2)).
Then (V) acts linearly on C[V] by
(z,2,q) - by = exp(2mi(q + B(v, 2))bytaz, (2,2,q9) € EV), vEV.
This yields an absolutely irreducible faithful representation A : £(V) — GLjy(C).

Lemma 3. The hyperbolic counitary group U(R, ®) acts as group automorphisms
on E(V) via

(3 5)" &) ewa

= (az + B, vz + 6, g + pa(P1)(2) + pa(92)(x) + par(m)(2,2)) -
If p is a faithful representation, then this action is faithful.

Also the associated Clifford-Weil group C(p) < GL(C[V]) acts on A(E(V)) =
E(V) by conjugation.

Lemma 4. Forr € R*,¢ € ® and (z,x,q) € E(V) we have
Ad((r, 0)) (2, 2,0)) = (mydg) A((2, 2, ) (mydy)
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Proof. The proof is an easy calculation.

d((r,9))(z,2.0) = ("2 + 1777 (A(@))z, re, g + pa () (x))
maps the basis element b, (v € V) to

exp(27i(q + pa(9)(x) + B(v,r ™7z + 177 A(9))2) byt ra-
On the other hand
(mrdg) A((2,2,9)) (mrdg) ™ (by) =
— mdy exp(2i(g — po(6) (1) + B0, 2)) (b1 sa)
= exp(2mi(q — p¢(¢)( “lo) + B(rT o, 2) + pa(9) (17 v + 2))) (bura)
— exp(2rila + B0, 2) + par A(G)(r10,2))) (bt ra)

)
which is the same as the above, since 3(r~!v,z) = 8(v,r~7z) by definition of the
involution J and

P (A(@))(r™ o, x) = Blr~ o, 7 (A(@))a) = Bo,r ™ H(A(9))x).

<

Lemma 5. For e = u.v, a symmetric idempotent in R and (z,x,q) € E(V)

A(He,ue,vc (z,7,q)) = he,uc,veA((Z,$7Q))h .

€,Ue,Ve "

Proof. The group &£(V) is generated by (z,0,0), (0,z,0), (0,0, q) where z € e’V U
(1—e!)V,z€eVU(l—e)V, qe Q/7Z and it is enough to check the lemma for
these 5 types of generators. For (0,0, ¢) this is clear. Similarly, if z € (1—e”)V and
x € (1 —e)V, then both sides yield A((z,,q)) as one easily checks. For z € e’V
zeeV,qeQ/Z

He o, v, (2,7,q) = (vex, —e ‘w2, q 4+ B(z, —ex)).
To calculate the right hand side, we note that according to the decomposition

V=eVao(l-e)V

the space C[V] = CleV] ® C[(1 — e)V] is a tensor product and

he e w. = (he,ue,ve)C[eV] & id(C[(l—e)V] .

Moreover, the permutation matrix A((0,z,0)) : b, — by,1, for x € eV is a tensor
product p, ® id and similarly the diagonal matrix A((z,0,0)) for z € e’V is a
tensor product d, ® id. It is therefore enough to calculate the action on elements
of CleV]. For z =e’z € e’/V, 2 =ex € eV and v = ev € €V, we get

hevueﬂ’e ° A((erv 0, O)) 0 h_ b =

= e, v, (|€V] /2 Z exp(27m(ﬁ(—e_lv‘e]ev,w) + B(w, e’ 2)))by)
weeV
= leV|! Z Z exp(2mi(B(—e vl ev, w) + B(w, e’ 2) + B(w, vew))) by .
w'€eV weeV

Now B(—e vl ev, w)+ B(w, e’ 2) + B(w', vew) = B(—e~1 Jeere*lane’leew ,W).
Hence the sum over all w is non-zero, only if —v/ev + 2 + v/ ew’ = 0 which implies
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that w' = v — e 'u)z. Hence heu, v, © A((€72,0,0)) 0 hoy by = by_c-1,0.. A
similar calculation yields

hew, v, © A((0,ex,0)) o hIl b, =

€,Ue,Ve "V

= he,ue,ve(|ev‘71/2 Z exp(2mi(B(—e v ev,w)))bu )

weeV
= h(,"ueﬂ,e(|eV\71/2 Z exp(2mi (B(—e vl ev,w — ex)))by,)
weeV
= heu, v, © h;ie’ve (exp(2mi(B(e vl ev, ex)))b,)
= exp(27mi(B(v, vex)))by.
U

Proof. (of Theorem 2) That p(ker(m)) C S(C(p)) follows from Lemma 4 and 5.
Assume now that p is faithful. Then by Lemma 3 the action of U(R, ®) on E(V)
is faithful: Let s € S(C(p)). Then there is some f € F(R,®) with p(f) = s since
p is surjective. Moreover the action of w(f) € U(R,®) and p(f) € C(p) on E(V)
coincide, so 7(f) acts trivially on £(V) and therefore f € ker(r).

O

Remark 6. Let p be faithful. Lemma 4 and 5 show that every element a € C(p)
induces an automorphism « on E(V) that is in U(R,®). The latter group acts
faithfully on E(V) by Lemma 3 hence o € U(R, D) is uniquely determined. This
defines a group epimorphism

v:C(p) = U(R, D), a— a.

The kernel of v is precisely the scalar subgroup S(C(p)). The inverse homomorphism
18

0 :U(R,®) — C(p)/S(C(p)); ur p(n(u))
which is well defined by Theorem 2.

For the calculations in Section 5 we need the following lemma.

Lemma 7. Let X € U(R,®) be as in (1). If 6> = § then 1 :=1— 0 is a symmetric
idempotent of R.

Proof. We define u, = —1y/1”, v, = /B¢ and calculate
uv, = _(1 - 5)671’7‘](1 - 6J)6(1 - 6)
= —(1=8)c" 778 (1=8)+ (1 -0y §78 (1-9)
— —~
=aled—e =p7ed

= (1-0)e'e(l-86)=1-6=1

and
vu, = —(1-86)p1 =08y (1-67)
= (1078 (1-0") + (1 -67)3de 17 (1 - 487)
—— ——
=adl—1 =~67

(1= (-D(1-6"y=1-6" =7,
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3. 8(C(p)) < S(C(p/C))

The Clifford-Weil group C(p/C) can be derived from C(p) by restricting the
operation of C(p) to a submodule of C[V].

Lemma 8. The group C(p) acts on a submodule of C[V] isomorphic to C[C+/C].
This yields a representation

res : C(p) — GL(C[C*/C))

with res(C(p)) < C(p/C). For the scalar subgroups we get ker(res) N S(C(p)) = {1}
and hence S(C(p)) is isomorphic to a subgroup of S(C(p/C)).

Proof. Let Rep denote a set of coset representatives of C+/C. We define a
subspace

Ui={> Y abysc|a, €C}<C[V].

vERep ceC

This subspace is isomorphic to C[C1/C] via

f: (C[CL/C] — U, Z aybyrc Z Zaubv+c.

vERep vERep ceC

So we have
res(z) = foxo f~t € GL(U)

for z € C(p). Particularly, if x = s -id¢y) then res(z) = s-idgjot /¢) and hence the
restriction of res to the scalar subgroup of C(p) is injective.
We now will show that

*H fo p(ﬁ-’e,uc,vc) o f_l = p/C(ﬁe,uc,vc)
and
*d fopd((r,9))) o 1 =p/C(d((r, 9)))

where p : F(R,®) — C(p) and p/C : F(R,®) — C(p/C) denote the group homo-
morphisms as defined (2). So we have Im(res) < C(p/C) = Im(p/C) which shows
the lemma.

To prove g let v+ C € C+/C and let T denote a set of coset representatives
of eCt/eC = eCt/C. Then
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f71 Op(He,ue,ve) © f(bU+C) = f71 Op(He,ue,ve)(z bv+c)

ceC
=100 1V Y exp(2miB(w, ve(v + €))but (1—e)(ote))
ceC weeV
_1(|6V‘_% Z exp(2mif(w, vev)) Z
weeV ce(l—e)C
. Z exp(2mif(w, ve€)) byt (1—e)(v+e))
ceeC

{ leC|, w € eCt,

0 otherwise.

eC .
||eV|2 Z Z exp(27miB(w, vev)) by (1—e) (v4¢'))

weeCL c’e(1—e)C

Z Z Z exp(2miB(w, vev) )by pet(1—e)(v4e'))

IeCI

|€V‘ weT ¢’e€(1—e)C ceeC
C
=f! |e | Z exp(2miB(w, vev Z bu+(1—e)v
|6V‘ weT ceC
:|eC’i/C|—§ Z exp(2mif3/C(w, ve(v + C)))byt(1—e) (v+0)
weeC+/C

:p/c(f{e,ue,ve)(bv-&-c‘)-
To show x4 we note that pg(¢)(c) = 0 for all ¢ € C and for all ¢ € ® and obtain

F~ o p(d((r, 8))) © flbure) = fH o p(d( ngv+c

= [ (p(d((r,0)) gexp<2wip@<¢>(v + c))bwge

= f_l(z;eXP(ch:@(@(U))bWMC)
1(6:22exp(27ripq>(¢)(v))bm+c)

= exp(27ips /C(9)(v + C))br(vtc))
=p/C(d((r,$)))(busc).

4. THE STRATEGY.
Without loss of generality we now assume that p is faithful, that is,
ker(p) = (Amg(V), ker(pe)) = (0,0)
= ker(p/C). We then define Tes : U(R, ) — U(R/I,P/T) by

)
w2 0) (0 )= (ot ) (T )

and let (I,T
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By Remark 6 the epimorphism

v:C(p) = U(R, @) by v(m,dy) = d((r,d)), v(heu.v.) = Heu.v.
for r € R*, ¢ € ® and symmetric idempotents e = u.v. € R is well defined and
its kernel is S(C(p)). Similarly 7 : C(p/C) — U(R/I,®/T"). Then vop = 7 and
vop/C =mn/C, where n/C : F(R/I,®/T") — U(R/I,®/T) is the analogous group
epimorphism. Again the representation p/C of (R/I,®/T") is faithful so by Remark

6 the kernel of 7 is S(C(p/C)).
We then have the following commutative diagram with exact rows and columns

1 1
l 1
1 —  ker(res) Vliergres ker (Tes) - Y — 1
! l !
1 - SCp) — Ch = URe)  — 1
l | res | Tes
1 — S(C(p/C) — Cp/C) =  UR/LYT) — 1
! l !
y 1 1
1

To see that all sequences are exact, we note that v|yer(res) 18 injective, since
ker(res) N S(C(p)) = 1. The homomorphisms Tes and res are surjective, since idem-
potents and units of R/T lift to idempotents and units of R. Moreover Tesov = Tores
as one checks on the generators.

The claim of Theorem 1 is that ) is trivial. But this is fulfilled if and only if )’
is trivial, that is, if ¥/|ier(res) is an isomorphism since

_ 1SC/O)] _ 1C(p/C)| - [UR, ®)| _ |ker(tes)|

V1= TIsonl ~ MB/L o) - 60~ [ker(res)] ~ ¥ "

5. THE SURJECTIVITY OF V|ker(res)

During the proof of Theorem 1 some results on lifting symmetric idempotents
are needed, which are stated in the next two lemmata.

Lemma 9. Let R be an Artinian ring and I an ideal of R. Ife€ I +rad R C R
such that €2 = e mod rad R then there exists an idempotent ¢’ € I such that e’ = e
mod rad R.

Proof. We choose xy € rad R such that eg := e+ 29 € I. Then eg +rad R
is an idempotent in R/rad R. Since rad R is a nilpotent ideal of R [2, Theorem
4.9] constructs an idempotent e/ = f(eg) € I for some polynomial f € Z[X] with
f£(0) = 0 such that ¢’ + rad R = ¢y + rad R. O

By [2, Theorem 4.5] applied to an idempotent e € R, the right-modules eR and
e’/ R are isomorphic, if and only if their quotients modulo rad R are isomorphic.
Hence we find

Lemma 10. Let e+rad R € R/rad R be a symmetric idempotent such that
e+rad R = u.ve +rad R, e’ +rad R = vou. + rad R,
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ue +rad R € (eRe’) +rad R, v, € (e/Re) +rad R. If e € R is an idempotent then
e is symmetric as well. More precisely, there exist G € eRe”’, ¥, € e’ Re such that

e = l0e, € = Delie
and U, = v, mod rad R.

For the rest of this note, let

o (3 1) ) e

and let (I,T) := ker(p/C). In particular, o,6 € 1+ 1, 8,7 € I, ¢1,¢2 € T and
m € ¥(I). We have to find some x € ker(res) such that v(z) = X.

Lemma 11. We have d(P(R, ®)) Nker(tes) C Im(V|ker(res))-

Proof. Let r € R*,¢ € ® such that d((r,¢)) = v(m,dy) € ker(tes). Then
r € 1+1 and ¢ € T. In particular r acts as the identity on C+/C and pg/C(¢) = 0.
This implies that both m, and dy € ker(res). O

Lemma 12. Let 6 be a unit. Then there exists x € ker(res) such that v(z) = X.

Proof. Since ker(res) is a normal subgroup of C(p) it suffices to show that
X is contained in the normal subgroup of U(R,®) generated by the elements
d(P(R, ®)) Nker(Tes). We show that there is ¢ € I' such that

X =d((6,¢2)) H112d((1,0))Hi 1 ;.
Wetave d(6.00) = (70 7 ) (0 J))) and henee

acon = (5 ) (0 L))

‘We therefore find
J _ sJps—1 _ —-1 ~
oy x = (TSI 0 (el e )

for some m € M. Since the upper right entry in the first matrix of this element of
U(R, ®) is 0 we obtain 7 = 0 and similarly 6/a — §736 1y =1 and we get

(6 8a)) X << 5—117 0 )( ~$2[6719] + 1 0 ))

Furthermore,

e (2 0.0 %)) (2 ) ()

Then we have

e xym = (o ") (0 ).

with some m’ € M and

¢ = (-6 ')} — ¢207 9] + ¢1 €T,
since —ed "'y € I and ¢, ¢ € I'. Again m’ = 0 since the lower left entry in the
first matrix is 0. Hence

Hill,ld((év ¢2))_1XH1,1,1 =d((1,9)) € ker(res)
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as claimed. 0
We now conclude the proof of Theorem 1 by showing

Lemma 13. The map V|ker(res) 05 surjective, that is, Im(v|xer(res)) = ker(Tes).
Proof. We show that there exists a symmetric idempotent ¢ € I such that

_ o B o1 W
(55 ()

=X’

and &' € R*. Since 1 € I = ker(p/C) the set (C+/C) = {0} and hence h, 4, ., €
ker(res). By Lemma 12 X’ € Im(V/|ker(res) ), S0 the same holds for X.

Now let us construct ¢. The ring R/rad R is a direct sum of matrix rings over
skew fields. Thus there exist uy,us € R* such that u;dus is an idempotent modulo
rad R. After conjugating with us we obtain an idempotent @d +rad R € R/rad R
with @ € R*. Since @6 + (I + rad R) € R/(I + rad R) is an idempotent as well
and 0 € 1+ I is a unit modulo I + rad R, it follows that @ € 1 + (I +rad R). We
can even assume that 4 € 1+ 1. If 4 =1+ i+ r with ¢ € I and r € rad R then
(1+4)6 = (u—r)d is an idempotent mod rad R. Additionally, from @ € R* we
get 1 +14 € R*, so we can assume % = 1+ 4. Now d((@,0)) € ker(Tes), thus

X € ker(ts) < d((@,0))X € ker(tes)

STy -
o <( u{wa uﬂaﬂ )7( $1 (22 )> € ker(Fes)

Thus we can assume that 6 +rad R € R/rad R is an idempotent.
In the hyperbolic counitary group U(R/rad R, ®/T") there is

s a+radR fB+radR ¢1+T p+(radR)
B vy+radR d+radR )’ R

Lemma 7 says that e := (1 — ¢) + rad R is a symmetric idempotent of R/rad R;
more precisely, we may write e = u.v, with

ue = —ee 1y7el +rad R,
ve = e’ fe’ +rad R.

By Lemma 9 we obtain a symmetric idempotent
ti=e+zx=1—-0+x€l

with x € rad RN I. We calculate the projection on the first component
-1 (o g 8 —al —wle\ (o B
W(XHL’u“UL) = ( ~ 5 ) < uz] 5 — - ,yl 5/

with 6’ = —yv/e + § — dz. It remains to show that & € R*. Lemma 10 gives
v, = (1-67)3(1 —§) mod rad R. Also éx € rad(R), so it remains to show that

8 = —y(1—87)87e(1 - 6) + 6 € R*.
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We observe that 6'6 = —y(1 — 67)37¢ (1 — §)6 +62 = § and

i

(1-0)0" = —(1-6)y(1-38")p"e(1-0) =
—(1=0)87e(1=8) + (1 =070 B7e(1 —68) = —(1=8)y8 e+ (1-d)yp e =

=0, since 767 =6¢7 v :57[;

—(1-96) 8¢ +(1—-0)y'B8 = 1-6.
—— —_——
=delale—1 =0
Particularly, (1 —6)(2—6') = 1 — 6. Now we see that &' is a unit since
528 =80GE+1=-86)2-0)=0—6+6=1—-6+6=1.

O
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