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Abstract. This note gives an explicit proof that the scalar subgroup of the

Clifford-Weil group remains unchanged when passing to the quotient represen-
tation filling a gap in [3]. For other current and future errata to [3] see

http://www.research.att.com/∼njas/doc/cliff2.html/.

1. Introduction

All notations in this paper are introduced in detail in [3] and we refer to this book
for their definitions. One main goal of the book is to introduce a unified language to
describe the Type of self-dual codes combining the different notions of self-duality
and Types, that are well established in coding theory. The Type of a code is a finite
representation ρ = (V, ρM , ρΦ, β) of a finite form ring R = (R,M,ψ,Φ). The finite
alphabet V is a left module for the ring R and the biadditive form β : V ×V → Q/Z
defines the notion of duality. A code C of length N is then an R-submodule of V N

and the dual code is

C⊥ = {v ∈ V N |
N∑
i=1

β(vi, ci) = 0 ∀c ∈ C}.
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160 CLIFFORD-WEIL GROUPS OF QUOTIENT REPRESENTATIONS.

Additional properties of codes of a given Type are encoded in the R-qmodule ρΦ(Φ)
which is a certain subgroup of the group of quadratic mappings V → Q/Z. A code
C ≤ V N is isotropic, if C ≤ C⊥ and

N∑
i=1

ρΦ(φ)(ci) = 0 for all φ ∈ Φ and for all c ∈ C.

Given a finite representation ρ, one associates a finite subgroup C(ρ) of GL(C[V ]),
called the associated Clifford-Weil group (see Section 2). For certain finite form
rings (including direct products of matrix rings over finite Galois rings) it is shown
in [3, Theorem 5.5.7] that the ring of polynomial invariants of C(ρ) is spanned by the
complete weight-enumerators of self-dual isotropic codes of Type ρ. We conjecture
that this theorem holds for arbitrary finite form rings. It is shown in [3, Theorem
5.4.13, 5.5.3] that in general the order of the scalar subgroup

S(C(ρ)) = C(ρ) ∩ C∗ idC[V ]

is exactly the greatest common divisor of the lengths of self-dual isotropic codes of
Type ρ. The proof of this theorem uses the fact that the scalar subgroup of C(ρ)
remains unchanged when passing to the quotient representation. The aim of the
present note is to give a full proof of this statement, Theorem 1.

Throughout the note we fix an isotropic code C ≤ C⊥ ≤ V in ρ. Then the
quotient representation ρ/C is defined by

ρ/C := (C⊥/C, ρM/C, ρΦ/C, β/C),
where (ρM/C(m))(v + C,w + C) = ρM (m)(v, w), (ρΦ/C(φ))(v + C) = ρΦ(φ)(v),
and β/C(v + C,w + C) = β(v, w) for all v, w ∈ C⊥,m ∈M,φ ∈ Φ.

Theorem 1. Let R = (R,M,ψ,Φ) be a finite form-ring and let ρ = (V, ρM , ρΦ, β)
be a finite representation of R. Let C be an isotropic self-orthogonal code in ρ.
Then

S(C(ρ)) ∼= S(C(ρ/C)).

2. Clifford-Weil groups and hyperbolic counitary groups

The Clifford-Weil group C(ρ) associated to the finite representation ρ acts linearly
on the space C[V ] with basis [bv : v ∈ V ]. It is generated by

mr : bv 7→ brv for r ∈ R∗
dφ : bv 7→ exp(2πiρΦ(φ)(v))bv for φ ∈ Φ
he,ue,ve : bv 7→ 1

|eV |1/2
∑
w∈eV exp(2πiβ(w, vev))bw+(1−e)v e2 = e ∈ R symmetric.

Recall that the form-ring structure defines an involution J on R. Then an idempo-
tent e ∈ R is called symmetric, if eR and eJR are isomorphic as right R-modules,
which means that there are ue ∈ eReJ , ve ∈ eJRe such that e = ueve and eJ = veue.

The Clifford-Weil group C(ρ) is a projective representation of the hyperbolic
counitary group

U(R,Φ) = U(
(

0 0
1 0

)
,Mat2(R),Φ2).

The elements of U(R,Φ) are of the form

(1) X =
((

α β
γ δ

)
,

(
φ1 m

φ2

))
∈ Mat2(R)× Φ2
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such that (
γJα γJβ

δJα− 1 δJβ

)
= ψ−1

2

(
λ(φ1) m
τ(m) λ(φ2)

)
.

A more detailed definition of U(R,Φ) can be found in [3, Chapter 5.2].
It is shown in the book that U(R,Φ) is generated by the elements

d((r, φ)) =
((

r−J r−Jψ−1(λ(φ))
0 r

)
,

(
0 0

φ

))
with r ∈ R∗, φ ∈ Φ and

He,ue,ve =
((

1− eJ ve
−ε−1uJe 1− e

)
,

(
0 ψ(−εe)

0

))
,

where e = ueve runs through the symmetric idempotents of R.
To formalize the proofs we let F(R,Φ) denote the free group on

{d̃(r, φ), H̃e,ue,ve | r ∈ R∗, φ ∈ Φ, e = ueve symmetric idempotent in R}.

On these generators there are two group epimorphism:

π : F(R,Φ)→ U(R,Φ), d̃(r, φ) 7→ d((r, φ)), H̃e,ue,ve 7→ He,ue,ve

and

(2) p : F(R,Φ)→ C(ρ); d̃(r, φ) 7→ mrdφ, H̃e,ue,ve 7→ he,ue,ve .

Theorem 2. p(ker(π)) ⊆ S(C(ρ)).
If ρ is faithful (i.e. AnnR(V ) = 0 = ker(ρΦ)), then p(ker(π)) = S(C(ρ)).

This is essentially [3, Theorem 5.3.2]. However the calculations there were omit-
ted so we take the opportunity to give them here for completeness (also since there
are a few typos in the proof there). As in [3, Theorem 5.3.2] we define the associated
Heisenberg group E(V ) := V × V ×Q/Z with multiplication

(z, x, q) · (z′, x′, q′) = (z + z′, x+ x′, q + q′ + β(x′, z)).

Then E(V ) acts linearly on C[V ] by

(z, x, q) · bv = exp(2πi(q + β(v, z)))bv+x, (z, x, q) ∈ E(V ), v ∈ V.

This yields an absolutely irreducible faithful representation ∆ : E(V )→ GL|V |(C).

Lemma 3. The hyperbolic counitary group U(R,Φ) acts as group automorphisms
on E(V ) via((

α β
γ δ

)
,

(
φ1 m

φ2

))
(z, x, q)

= (αz + βx, γz + δx, q + ρΦ(φ1)(z) + ρΦ(φ2)(x) + ρM (m)(z, x)) .

If ρ is a faithful representation, then this action is faithful.

Also the associated Clifford-Weil group C(ρ) ≤ GL(C[V ]) acts on ∆(E(V )) ∼=
E(V ) by conjugation.

Lemma 4. For r ∈ R∗, φ ∈ Φ and (z, x, q) ∈ E(V ) we have

∆(d((r, φ))(z, x, q)) = (mrdφ)∆((z, x, q))(mrdφ)−1.
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Proof. The proof is an easy calculation.

d((r, φ))(z, x, q) = (r−Jz + r−Jψ−1(λ(φ))x, rx, q + ρΦ(φ)(x))

maps the basis element bv (v ∈ V ) to

exp(2πi(q + ρΦ(φ)(x) + β(v, r−Jz + r−Jψ−1(λ(φ))x)))bv+rx.

On the other hand

(mrdφ)∆((z, x, q))(mrdφ)−1(bv) =

= mrdφ exp(2πi(q − ρΦ(φ)(r−1v) + β(r−1v, z))(br−1v+x)

= exp(2πi(q − ρΦ(φ)(r−1v) + β(r−1v, z) + ρΦ(φ)(r−1v + x)))(bv+rx)

= exp(2πi(q + β(r−1v, z) + ρM (λ(φ))(r−1v, x)))(bv+rx)

which is the same as the above, since β(r−1v, z) = β(v, r−Jz) by definition of the
involution J and

ρM (λ(φ))(r−1v, x) = β(r−1v, ψ−1(λ(φ))x) = β(v, r−Jψ−1(λ(φ))x).

�

Lemma 5. For e = ueve a symmetric idempotent in R and (z, x, q) ∈ E(V )

∆(He,ue,ve(z, x, q)) = he,ue,ve∆((z, x, q))h−1
e,ue,ve .

Proof. The group E(V ) is generated by (z, 0, 0), (0, x, 0), (0, 0, q) where z ∈ eJV ∪
(1 − eJ)V , x ∈ eV ∪ (1 − e)V , q ∈ Q/Z and it is enough to check the lemma for
these 5 types of generators. For (0, 0, q) this is clear. Similarly, if z ∈ (1−eJ)V and
x ∈ (1− e)V , then both sides yield ∆((z, x, q)) as one easily checks. For z ∈ eJV ,
x ∈ eV , q ∈ Q/Z

He,ue,ve(z, x, q) = (vex,−ε−1uJe z, q + β(z,−εx)).

To calculate the right hand side, we note that according to the decomposition

V = eV ⊕ (1− e)V

the space C[V ] = C[eV ]⊗ C[(1− e)V ] is a tensor product and

he,ue,ve = (he,ue,ve)C[eV ] ⊗ idC[(1−e)V ] .

Moreover, the permutation matrix ∆((0, x, 0)) : bv 7→ bv+x for x ∈ eV is a tensor
product px ⊗ id and similarly the diagonal matrix ∆((z, 0, 0)) for z ∈ eJV is a
tensor product dz ⊗ id. It is therefore enough to calculate the action on elements
of C[eV ]. For z = eJz ∈ eJV , x = ex ∈ eV and v = ev ∈ eV, we get

he,ue,ve ◦∆((eJz, 0, 0)) ◦ h−1
e,ue,vebv =

= he,ue,ve(|eV |−1/2
∑
w∈eV

exp(2πi(β(−ε−1vJe εv, w) + β(w, eJz)))bw)

= |eV |−1
∑
w′∈eV

∑
w∈eV

exp(2πi(β(−ε−1vJe εv, w) + β(w, eJz) + β(w′, vew)))bw′ .

Now β(−ε−1vJe εv, w)+β(w, eJz)+β(w′, vew) = β(−ε−1vJe εv+ε−1z+ε−1vJe εw
′, w).

Hence the sum over all w is non-zero, only if −vJe εv + z + vJe εw
′ = 0 which implies
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that w′ = v − ε−1uJe z. Hence he,ue,ve ◦ ∆((eJz, 0, 0)) ◦ h−1
e,ue,vebv = bv−ε−1uJe z

. A
similar calculation yields

he,ue,ve ◦∆((0, ex, 0)) ◦ h−1
e,ue,vebv =

= he,ue,ve(|eV |−1/2
∑
w∈eV

exp(2πi(β(−ε−1vJe εv, w)))bw+ex)

= he,ue,ve(|eV |−1/2
∑
w∈eV

exp(2πi(β(−ε−1vJe εv, w − ex)))bw)

= he,ue,ve ◦ h−1
e,ue,ve(exp(2πi(β(ε−1vJe εv, ex)))bv)

= exp(2πi(β(v, vex)))bv.

�

Proof. (of Theorem 2) That p(ker(π)) ⊆ S(C(ρ)) follows from Lemma 4 and 5.
Assume now that ρ is faithful. Then by Lemma 3 the action of U(R,Φ) on E(V )
is faithful: Let s ∈ S(C(ρ)). Then there is some f ∈ F(R,Φ) with p(f) = s since
p is surjective. Moreover the action of π(f) ∈ U(R,Φ) and p(f) ∈ C(ρ) on E(V )
coincide, so π(f) acts trivially on E(V ) and therefore f ∈ ker(π).

�

Remark 6. Let ρ be faithful. Lemma 4 and 5 show that every element a ∈ C(ρ)
induces an automorphism α on E(V ) that is in U(R,Φ). The latter group acts
faithfully on E(V ) by Lemma 3 hence α ∈ U(R,Φ) is uniquely determined. This
defines a group epimorphism

ν : C(ρ)→ U(R,Φ), a 7→ α.

The kernel of ν is precisely the scalar subgroup S(C(ρ)). The inverse homomorphism
is

θ : U(R,Φ)→ C(ρ)/S(C(ρ)), u 7→ p(π−1(u))
which is well defined by Theorem 2.

For the calculations in Section 5 we need the following lemma.

Lemma 7. Let X ∈ U(R,Φ) be as in (1). If δ2 = δ then ι := 1− δ is a symmetric
idempotent of R.

Proof. We define uι = −ιγJ ιJ , vι = ιJβι and calculate

uιvι = −(1− δ)ε−1γJ(1− δJ)β(1− δ)
= −(1− δ)ε−1 γJβ︸︷︷︸

=αJεδ−ε

(1− δ) + (1− δ)ε−1γJ δJβ︸︷︷︸
=βJεδ

(1− δ)

= (1− δ)ε−1ε(1− δ) = 1− δ = ι

and

vιuι = −(1− δJ)β(1− δ)ε−1γJ(1− δJ)

= −(1− δJ)βε−1γJ︸ ︷︷ ︸
=αδJ−1

(1− δJ) + (1− δJ)β δε−1γJ︸ ︷︷ ︸
=γδJ

(1− δJ)

= −(1− δJ)(−1)(1− δJ) = 1− δJ = ιJ .

�
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3. S(C(ρ)) ≤ S(C(ρ/C))

The Clifford-Weil group C(ρ/C) can be derived from C(ρ) by restricting the
operation of C(ρ) to a submodule of C[V ].

Lemma 8. The group C(ρ) acts on a submodule of C[V ] isomorphic to C[C⊥/C].
This yields a representation

res : C(ρ)→ GL(C[C⊥/C])

with res(C(ρ)) ≤ C(ρ/C). For the scalar subgroups we get ker(res) ∩ S(C(ρ)) = {1}
and hence S(C(ρ)) is isomorphic to a subgroup of S(C(ρ/C)).

Proof. Let Rep denote a set of coset representatives of C⊥/C. We define a
subspace

U := {
∑
v∈Rep

∑
c∈C

avbv+c | av ∈ C} ≤ C[V ].

This subspace is isomorphic to C[C⊥/C] via

f : C[C⊥/C]→ U,
∑
v∈Rep

avbv+C 7→
∑
v∈Rep

∑
c∈C

avbv+c.

So we have

res(x) = f ◦ x ◦ f−1 ∈ GL(U)

for x ∈ C(ρ). Particularly, if x = s · idC[V ] then res(x) = s · idC[C⊥/C] and hence the
restriction of res to the scalar subgroup of C(ρ) is injective.

We now will show that

?H f ◦ p(H̃e,ue,ve) ◦ f−1 = p/C(H̃e,ue,ve)

and

?d f ◦ p(d̃((r, φ))) ◦ f−1 = p/C(d̃((r, φ)))

where p : F(R,Φ) → C(ρ) and p/C : F(R,Φ) → C(ρ/C) denote the group homo-
morphisms as defined (2). So we have Im(res) ≤ C(ρ/C) = Im(p/C) which shows
the lemma.

To prove ?H let v + C ∈ C⊥/C and let T denote a set of coset representatives
of eC⊥/eC ∼= eC⊥/C. Then
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f−1 ◦ p(H̃e,ue,ve) ◦ f(bv+C) = f−1 ◦ p(H̃e,ue,ve)(
∑
c∈C

bv+c)

=f−1(
∑
c∈C
|eV |− 1

2

∑
w∈eV

exp(2πiβ(w, ve(v + c)))bw+(1−e)(v+c))

=f−1(|eV |− 1
2

∑
w∈eV

exp(2πiβ(w, vev))
∑

c′∈(1−e)C

·

·
∑
c∈eC

exp(2πiβ(w, vec))︸ ︷︷ ︸
=

 |eC|, w ∈ eC⊥,
0 otherwise.

bw+(1−e)(v+c′))

=f−1(
|eC|
|eV | 12

∑
w∈eC⊥

∑
c′∈(1−e)C

exp(2πiβ(w, vev))bw+(1−e)(v+c′))

=f−1(
|eC|
|eV | 12

∑
w∈T

∑
c′∈(1−e)C

∑
c∈eC

exp(2πiβ(w, vev))bw+c+(1−e)(v+c′))

=f−1(
|eC|
|eV | 12

∑
w∈T

exp(2πiβ(w, vev))
∑
c∈C

bw+(1−e)v + c)

=|eC⊥/C|− 1
2

∑
w∈eC⊥/C

exp(2πiβ/C(w, ve(v + C)))bw+(1−e)(v+C)

=p/C(H̃e,ue,ve)(bv+C).

To show ?d we note that ρΦ(φ)(c) = 0 for all c ∈ C and for all φ ∈ Φ and obtain

f−1 ◦ p(d̃((r, φ))) ◦ f(bv+C) = f−1 ◦ p(d̃((r, φ)))(
∑
c∈C

bv+c)

= f−1(p(d̃((r, 0)))
∑
c∈C

exp(2πiρΦ(φ)(v + c))bv+c)

= f−1(
∑
c∈C

exp(2πiρΦ(φ)(v))brv+rc)

= f−1(
∑
c∈C

exp(2πiρΦ(φ)(v))brv+c)

= exp(2πiρΦ/C(φ)(v + C))br(v+C))

= p/C(d̃((r, φ)))(bv+C).

�

4. The strategy.

Without loss of generality we now assume that ρ is faithful, that is,

ker(ρ) = (AnnR(V ), ker(ρΦ)) = (0, 0)

and let (I,Γ) = ker(ρ/C). We then define res : U(R,Φ)→ U(R/I,Φ/Γ) by

res(
((

α β
γ δ

)
,

(
φ1 m

φ2

))
) =

((
α+ I β + I
γ + I δ + I

)
,

(
φ1 + Γ m+ ψ(I)

φ2 + Γ

))
).
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By Remark 6 the epimorphism

ν : C(ρ)→ U(R,Φ) by ν(mrdφ) = d((r, φ)), ν(he,ue,ve) = He,ue,ve

for r ∈ R∗, φ ∈ Φ and symmetric idempotents e = ueve ∈ R is well defined and
its kernel is S(C(ρ)). Similarly ν : C(ρ/C) → U(R/I,Φ/Γ). Then ν ◦ p = π and
ν ◦ p/C = π/C, where π/C : F(R/I,Φ/Γ) → U(R/I,Φ/Γ) is the analogous group
epimorphism. Again the representation ρ/C of (R/I,Φ/Γ) is faithful so by Remark
6 the kernel of ν is S(C(ρ/C)).

We then have the following commutative diagram with exact rows and columns

1 1
↓ ↓

1 → ker(res)
ν|ker(res)→ ker(res) → Y ′ → 1

↓ ↓ ↓
1 → S(C(ρ)) → C(ρ) ν→ U(R,Φ) → 1

↓ ↓ res ↓ res
1 → S(C(ρ/C)) → C(ρ/C) ν→ U(R/I,Φ/Γ) → 1

↓ ↓ ↓
Y 1 1
↓
1

To see that all sequences are exact, we note that ν| ker(res) is injective, since
ker(res)∩S(C(ρ)) = 1. The homomorphisms res and res are surjective, since idem-
potents and units of R/I lift to idempotents and units of R. Moreover res◦ν = ν◦res
as one checks on the generators.

The claim of Theorem 1 is that Y is trivial. But this is fulfilled if and only if Y ′
is trivial, that is, if ν|ker(res) is an isomorphism since

|Y| = |S(C(ρ/C))|
|S(C(ρ))|

=
|C(ρ/C)| · |U(R,Φ)|
|U(R/I,Φ/Γ)| · |C(ρ)|

=
| ker(res)|
| ker(res)|

= |Y ′|.

5. The surjectivity of ν|ker(res)

During the proof of Theorem 1 some results on lifting symmetric idempotents
are needed, which are stated in the next two lemmata.

Lemma 9. Let R be an Artinian ring and I an ideal of R. If e ∈ I + radR ⊆ R
such that e2 ≡ e mod radR then there exists an idempotent e′ ∈ I such that e′ ≡ e
mod radR.

Proof. We choose x0 ∈ radR such that e0 := e + x0 ∈ I. Then e0 + radR
is an idempotent in R/ radR. Since radR is a nilpotent ideal of R [2, Theorem
4.9] constructs an idempotent e′ = f(e0) ∈ I for some polynomial f ∈ Z[X] with
f(0) = 0 such that e′ + radR = e0 + radR. �

By [2, Theorem 4.5] applied to an idempotent e ∈ R, the right-modules eR and
eJR are isomorphic, if and only if their quotients modulo radR are isomorphic.
Hence we find

Lemma 10. Let e+ radR ∈ R/ radR be a symmetric idempotent such that

e+ radR = ueve + radR, eJ + radR = veue + radR,
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ue + radR ∈ (eReJ) + radR, ve ∈ (eJRe) + radR. If e ∈ R is an idempotent then
e is symmetric as well. More precisely, there exist ũe ∈ eReJ , ṽe ∈ eJRe such that

e = ũeṽe, e
J = ṽeũe

and ṽe ≡ ve mod radR.

For the rest of this note, let

(3) X :=
((

α β
γ δ

)
,

(
φ1 m

φ2

))
∈ ker(res)

and let (I,Γ) := ker(ρ/C). In particular, α, δ ∈ 1 + I, β, γ ∈ I, φ1, φ2 ∈ Γ and
m ∈ ψ(I). We have to find some x ∈ ker(res) such that ν(x) = X.

Lemma 11. We have d(P (R,Φ)) ∩ ker(res) ⊆ Im(ν|ker(res)).

Proof. Let r ∈ R∗, φ ∈ Φ such that d((r, φ)) = ν(mrdφ) ∈ ker(res). Then
r ∈ 1+I and φ ∈ Γ. In particular r acts as the identity on C⊥/C and ρΦ/C(φ) = 0.
This implies that both mr and dφ ∈ ker(res). �

Lemma 12. Let δ be a unit. Then there exists x ∈ ker(res) such that ν(x) = X.

Proof. Since ker(res) is a normal subgroup of C(ρ) it suffices to show that
X is contained in the normal subgroup of U(R,Φ) generated by the elements
d(P (R,Φ)) ∩ ker(res). We show that there is φ ∈ Γ such that

X = d((δ, φ2))H1,1,1d((1, φ))H−1
1,1,1.

We have d((δ, φ2)) =
((

δ−J β
0 δ

)
,

(
0 0

φ2

))
and hence

d((δ, φ2))−1 =
((

δJ −δJβδ−1

0 δ−1

)
,

(
0 0
−φ2[δ−1]

))
.

We therefore find

d((δ, φ2))−1X =
((

δJα− δJβδ−1γ 0
δ−1γ 1

)
,

(
−φ2[δ−1γ] + φ1 m̃

0

))
for some m̃ ∈M . Since the upper right entry in the first matrix of this element of
U(R,Φ) is 0 we obtain m̃ = 0 and similarly δJα− δJβδ−1γ = 1 and we get

d((δ, φ2))−1X =
((

1 0
δ−1γ 1

)
,

(
−φ2[δ−1γ] + φ1 0

0

))
Furthermore,

H1,1,1 =
((

0 1
−εJ 0

)
,

(
0 ψ(−ε)

0

))
, H−1

1,1,1 =
((

0 −ε
1 0

)
,

(
0 ψ(−ε)

0

))
.

Then we have

(d((δ, φ2))−1X)H1,1,1 =
((

1 −εδ−1γ
0 1

)
,

(
0 m′

φ

))
,

with some m′ ∈M and

φ = {{ψ(−εδ−1γ) }} − φ2[δ−1γ] + φ1 ∈ Γ,

since −εδ−1γ ∈ I and φ1, φ2 ∈ Γ. Again m′ = 0 since the lower left entry in the
first matrix is 0. Hence

H−1
1,1,1d((δ, φ2))−1XH1,1,1 = d((1, φ)) ∈ ker(res)
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as claimed. �
We now conclude the proof of Theorem 1 by showing

Lemma 13. The map ν|ker(res) is surjective, that is, Im(ν|ker(res)) = ker(res).

Proof. We show that there exists a symmetric idempotent ι ∈ I such that

X =
((

α′ β′

γ′ δ′

)
,

(
φ′1 µ′

φ′2

))
︸ ︷︷ ︸

=:X′

Hι,uι,vι

and δ′ ∈ R∗. Since ι ∈ I = ker(ρ/C) the set ι(C⊥/C) = {0} and hence hι,uι,vι ∈
ker(res). By Lemma 12 X ′ ∈ Im(ν|ker(res)), so the same holds for X.

Now let us construct ι. The ring R/ radR is a direct sum of matrix rings over
skew fields. Thus there exist u1, u2 ∈ R∗ such that u1δu2 is an idempotent modulo
radR. After conjugating with u2 we obtain an idempotent ũδ + radR ∈ R/ radR
with ũ ∈ R∗. Since ũδ + (I + radR) ∈ R/(I + radR) is an idempotent as well
and δ ∈ 1 + I is a unit modulo I + radR, it follows that ũ ∈ 1 + (I + radR). We
can even assume that ũ ∈ 1 + I. If ũ = 1 + i + r with i ∈ I and r ∈ radR then
(1 + i)δ = (ũ − r)δ is an idempotent mod radR. Additionally, from ũ ∈ R∗ we
get 1 + i ∈ R∗, so we can assume ũ = 1 + i. Now d((ũ, 0)) ∈ ker(res), thus

X ∈ ker(res) ⇔ d((ũ, 0))X ∈ ker(res)

⇔
((

ũ−Jα ũ−Jβ
ũγ ũδ

)
,

(
φ1 µ

φ2

))
∈ ker(res)

Thus we can assume that δ + radR ∈ R/ radR is an idempotent.
In the hyperbolic counitary group U(R/ radR,Φ/Γ̃) there is

X̃ :=
((

α+ radR β + radR
γ + radR δ + radR

)
,

(
φ1 + Γ̃ µ+ ψ(radR)

φ2 + Γ̃

))
Lemma 7 says that e := (1 − δ) + radR is a symmetric idempotent of R/ radR;
more precisely, we may write e = ueve with

ue = −eε−1γJeJ + radR,
ve = eJβeJ + radR.

By Lemma 9 we obtain a symmetric idempotent

ι := e+ x = 1− δ + x ∈ I

with x ∈ radR ∩ I. We calculate the projection on the first component

π(XH−1
ι,uι,vι) =

(
α β
γ δ

)(
δJ − xJ −vJι ε
uJι δ − x

)
=
(
α′ β′

γ′ δ′

)
with δ′ = −γvJι ε + δ − δx. It remains to show that δ′ ∈ R∗. Lemma 10 gives
vι ≡ (1− δJ)β(1− δ) mod radR. Also δx ∈ rad(R), so it remains to show that

δ̃′ := −γ(1− δJ)βJε(1− δ) + δ ∈ R∗.
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We observe that δ̃′δ = −γ(1− δJ)βJε (1− δ)δ︸ ︷︷ ︸
=0

+δ2 = δ and

(1− δ)δ̃′ = −(1− δ)γ(1− δJ)βJε(1− δ) =

−(1− δ)γβJε(1− δ) + (1− δ)γδJβJε(1− δ)︸ ︷︷ ︸
=0, since γδJ=δεJγJ

= −(1− δ)γβJε+ (1− δ)γ βJεδ︸︷︷︸
=δJβ

=

−(1− δ) γβJε︸ ︷︷ ︸
=δεJαJε−1

+ (1− δ)γδJβ︸ ︷︷ ︸
=0

= 1− δ.

Particularly, (1− δ)(2− δ̃′) = 1− δ. Now we see that δ̃′ is a unit since

δ̃′(2− δ̃′) = δ̃′(δ + (1− δ))(2− δ̃′) = δ̃′ − δδ̃′ + δ = 1− δ + δ = 1.

�

References

[1] A. Günther, Self-dual group ring codes. PhD Thesis, RWTH Aachen University, in prepara-
tion

[2] H. Nagao, Y. Tsushima, Representations of finite groups. Academic Press (1988)

[3] G. Nebe, E.M. Rains, N.J.A. Sloane, Self-dual codes and invariant theory. Springer (2006)


