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PSEUDOPRIMES IN CERTAIN LINEAR RECURRENCES

FLORIAN LUCA AND IGOR E. SHPARLINSKI

(Communicated by T. Shaska)

Abstract. Let b > 1 be a fixed positive integer. We study the distribution
of pseudoprimes to base b in certain linear recurrence sequences. We prove,

in effective form, that most terms of these sequences are not pseudoprimes to

base b.

1. Introduction

1.1. Motivation. Let b > 2 be an integer. Recall that a pseudoprime to base
b is a composite positive integer m such that the congruence bm ≡ b (mod m)
holds. The question of the distribution of pseudoprimes in certain sequences of
positive integers has received some interest lately. For example, van der Poorten and
Rotkiewicz show that any arithmetic progression a mod d with a and d coprime
contains infinitely many pseudoprimes to base b; see [9] for details. Pseudoprime to
base b values of the Fibonacci numbers, polynomials and the Euler function have
been studied in [7], while pseudoprime Cullen and Woodall numbers are analyzed
in [8]. In a recent paper, the authors jointly with Cojocaru, fixed an elliptic curve
E defined over Q and studied the primes p such that the reductions of E modulo p
are base b pseudoprimes (see [2]).

Note that Fibonacci Cullen and Woodall numbers as well as polynomials, are all
examples of linearly recurrence sequences. In this paper, we continue this program
and look at the presence of pseudoprimes in linear recurrence sequences of certain
general types. One application of our results is an upper bound on the number of
pseudoprimes amongst the numbers of Fqn -rational points on a given elliptic curve
over a finite field Fq of q elements for n 6 x.

1.2. The set up. Let u = (un)n>0 be a linear recurrence sequence of integers
satisfying a homogeneous linear recurrence relation

un+k = a1un+k−1 + · · ·+ ak−1un+1 + akun , n = 1, 2, . . . ,

with the characteristic polynomial

ψ(X) = Xk − a1X
k−1 − · · · − ak−1X − ak ∈ Z[X].
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We assume, without loss of generality, that ak 6= 0. It is then well-known that

un =
m∑

i=1

Ai(n)αn
i ,

where α1, . . . , αm are the distinct roots of ψ(X), of multiplicities σ1, . . . , σm, re-
spectively, and Ai(X) are polynomials of degrees σi − 1 for i = 1, . . . ,m, with
coefficients in K = Q[α1, . . . , αm].

We recall that α1, . . . , αm are also called the characteristic roots. Further, as-
sume that (un)n>0 is nondegenerate, namely that αi/αj is not a root of 1 for any
1 6 i < j 6 m. It is well-known that there exist only finitely many n such that
un = 0 (see, for example, [10] for a bound on the number of such n). From now on,
we may assume that n > n0 is large so that un 6= 0.

We refer to [4] for these and other known facts about linear recurrence sequences.
In this paper, we study the number Nb,u(x) of positive integers n 6 x such that

un is a base b pseudoprime where the sequence u = (un)n>0 satisfies one additional
condition.

1.3. Divisibility sequences. Throughout the paper, we always assume that the
sequence (un)n>0 is a divisibility sequence, that is, um | un whenever m | n.

By the main result in [1] (see also [3] for a more general result), we know that
un | wn, where (wn)n>0 is a recurrence whose general term has the shape

(1) wn = anh
s∏

j=1

βn
j − γn

j

βj − γj

for some constants a ∈ K, integer h > 0, and algebraic integers βj , γj for j =
1, . . . , s such that βj/γj is not a root of unity for any j = 1, . . . , s. An immediate
consequence of this representation is that

(2) un = nh0vn,

where (vn)n>0 is a linear recurrence sequence having only simple roots and h0 > 0
is some integer. It is also clear that the sequence (vn)n>0 is of order at most k.

Note also that h0 = 0 if and only if the characteristic polynomial Ψ(X) of
(un)n>0 has no multiple roots.

1.4. Examples. Let (Fn)n>0 be the Fibonacci sequence given by F0 = 0, F1 = 1
and Fn+2 = Fn+1+Fn for all n > 0. It is well-known that the sequence (Fn)n>0 is a
divisibility sequence. In fact, Fn = wn, where (wn)n>0 is given by formula (1) with
s = 1 and β1, γ1 are the golden section and its conjugate. In particular, it follows
from our general results, that the set of n such that Fn is a base b pseudoprime
is of asymptotic density zero. As we have mentioned, this is already proved in [7].
The same remarks apply to the Pell sequence (Pn)n>0 given by P1 = 0, P1 = 1 and
Pn+2 = 2Pn+1 + Pn for all n > 0. Our results show that even the product FnPn is
a base b pseudoprime only for a set of n of asymptotic density zero.

The Cullen and Woodall numbers, denoted Cn and Dn, respectively, are given by
Cn = n2n +1 and Dn = n2n−1 for all n > 1. The sequences (Cn)n>0 and (Dn)n>0

are ternary recurrent of common characteristic polynomial ψ(X) = (X−1)2(X−2).
However, none of them is a divisibility sequence so our general result does not apply
to this sequence. However, using different arguments, it has been shown in [8] that
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the set of n such that Cn or Dn is a base b pseudoprime is of asymptotic density
zero.

The sequence of values of the Euler functions (ϕ(n))n>1 is a divisibility sequence
because ϕ(m) | ϕ(n) for all m | n, but it is not linearly recurrent. Nevertheless,
it is shown in [7] that the set of n such that ϕ(n) is a base b pseudoprime is of
asymptotic density zero.

Let q be a prime power and let E be an ordinary elliptic curve defined over
a finite field of q elements Fq. Let m(n) be the number of points on E defined
over Fqn . Then both sequences (m(n))n>1 and (m(n)/m(1))n>1 are divisibility
sequences. Indeed, m(n) = (τn− 1)(τn− 1), where τ and τ are the two eigenvalues
of the Frobenius. In the non-supersingular case, we know that τ/τ is not a root
of 1 (see, for example, [6, Lemma 5]), therefore our results show that each one of
the numbers m(n) and m(n)/m(1) is a base b pseudoprime only for a set of n of
asymptotic density zero. This compliments the results of [2], where it is shown
that for a fixed elliptic curve E over Q, under some natural assumptions, the set of
primes p such that the reductions of E modulo p are base b pseudoprimes forms a
subset of primes of relative density zero (in the set of all primes).

1.5. Notation. Throughout this paper, for any positive real number x and any
integer ` > 1, we write log` x for the function defined inductively by log1 x =
max{lnx, 1}, where lnx is the natural logarithm of x, and log` x = log1(log`−1 x)
for ` > 1. When ` = 1, we omit the subscript in order to simplify the notation;
however, we continue to assume that log x > 1 for any x > 0.

We use the Landau symbol O and the Vinogradov symbols � and � with their
usual meanings, with the understanding that any implied constants depend on our
data such as the sequence (un)n>0 and the number b. We recall that the notations
A � B, B � A and A = O(B) are all equivalent to the fact that there exists a
constant c such that the inequality |A| 6 cB holds for all sufficiently large values
of the input.

We always use the letters p and q to denote prime numbers, while m and n
always denote positive integers.

1.6. Congruences with linear recurrence sequences. We make use of the
following bound from [11] (see also [4, Theorem 5.11]).

Lemma 1. Let m > 2 be an integer coprime to infinitely many elements of a
nondegenerate linear recurrence sequence (wn)n>0 of order k. Then for any integer
N > 1 the number R(N,m) of solutions of the congruence

u(n) ≡ 0 (mod m), 0 6 n 6 N − 1,

satisfies the bound

R(N,m) 6 C(k)(N/ logm+ 1),

where C(k) depends only on k.

2. Main Results

2.1. Characteristic polynomial with multiple roots. Here we consider the
case when h0 > 0 in the representation (2).
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Theorem 2. Assume that a nondegenerate linear recurrence sequence (un)n>0 is
a divisibility sequence. If h0 > 0 in the representation (2), then

Nb,u(x) � x log2 x log3 x

log x
.

Proof. We let x be large and set

(3) w = (log x)2, y = x1/(k+2) and z = exp (24 log2 x log3 x) .

For a prime number p coprime to b we let t(p) denote the multiplicative order of b
modulo a prime p. We let Q be the set of primes p ∈ [z, y] with t(p) 6 p1/3. It is
shown in the proof of Theorem 1 in [8] that

(4)
∑
p∈Q

1
p
� 1

z1/3
� 1.

For an integer m we write P (m) for the largest prime divisor of m with the con-
vention that P (0) = P (±1) = 1. For a prime p we put qp = P (t(p)).

We define R as the set of primes p ∈ [y, z]\Q with qp 6 w. Clearly, each prime
p ∈ R has the property that p−1 has a divisor d > y1/3 with P (d) 6 w. Therefore,∑

p∈R

1
p
� x

∑
y1/36d6z
P (d)<w

∑
p<d3

p≡1 (mod d)

1
p
.

The arguments used in the proof of Theorem 2 in [8] lead easily to the bound

(5)
∑
p∈R

1
p
� (log2 x)2

z(log w)/6
= 1.

We let P be the set of primes p ∈ [z, y]\ (Q∪R). We let E be the set of positive
integers n 6 x which do not have a divisor p ∈ P.

By the Brun sieve inequality (see Theorem 2.2 in [5]), we have

#E � x
∏
p∈P

(
1− 1

p

)
.

Using (4) and (5), we obtain

(6) #E � x
∏

p∈[z,y]

(
1− 1

p

)
.

By Mertens’s formula (see [12] for a better error term) for a positive real number t
we have ∏

p6t

(
1− 1

p

)
= eγ log t

(
1 +O

(
1

log t

))
.

Applying this with t = y and t = z and dividing the two relations obtained in this
way we get, by estimate (6),

(7) #E � x
log z
log y

.

We now let N be the set of positive integers n 6 x which are not in E . Each
positive integer n ∈ N has a prime factor p ∈ P. To get an upper bound on #N ,
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it suffices, for every p ∈ P, to count the number Mb,u(x, p) of m 6 x/p such that
n = mp ∈ N and the congruence

bun − b ≡ 0 (mod un)

holds. Since h0 > 0, we see that

p | n | un | b(bun−1 − 1).

Clearly, if x is large enough, then

(8) gcd(qp, akbD) = 1

for all p ∈ P, where we recall that ak = ψ(0) is the constant term of the char-
acteristic polynomial ψ(X) of the sequence (un)n>0, and D is the product of the
discriminants of the irreducible factors of ψ. Since p | bun−1 − 1, we get

qp | t(p) | un − 1 = nh0vn − 1.

Since qp | p− 1 and n = mp, we derive that

(9) mh0vpm ≡ 1 (mod qp).

The classical theory of linear recurrence sequences (see [4]) implies that under the
condition (8) the sequence (vpm)m>1 whose order is at most k is purely periodic
modulo qp with some period Tp 6 qk

p −1. Furthermore, we also have the divisibility

Tp

∣∣ k∏
ν=1

(
qν
p − 1

)
,

which in turn implies that

(10) gcd(Tp, qp) = 1.

Thus, if we write m = r+Tps with some integers r and s such that 0 6 r < Tp and
0 6 s 6 x/pTp, then (9) implies that

(r + Tps)h0vpr ≡ 1 (mod qp).

Thanks to the condition (10), we see that the last congruence tells us that s belongs
to at most h0 arithmetic progressions modulo qp. Namely, this is a polynomial
congruence for s modulo qp of degree exactly h0 since p does not divide its leading
term Th0

p vpr. Thus, s may take at most h0(x/(pTpqp) + 1) possible values in the
interval [0, x/pTp], leading to the bound

(11) Mb,u(x, p) 6 Tph0

(
x

pTpqp
+ 1

)
.

Notice that due to our choice of parameters,

pTpqp < pqk+1
p < pk+2 6 yk+2 = x.

Hence, the bound (11) simplifies to

Mb,u(x, p) � x

pqp
.
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Using (7), we obtain

Nb,u(x) 6 #E +
∑
p∈P

Mb,u(x, p) � x
log z
log y

+ x
∑
p∈P

1
pqp

� x
log z
log y

+
x

w

∑
p∈P

1
p
� x

(
log z
log y

+
log2 y

w

)
.

Recalling the choice of w, y and z from (3), we obtain the desired result. �

2.2. Characteristic polynomial without multiple roots. Here, we consider
the case when h0 = 0 in the representation (2) and get a slightly weaker result than
in Theorem 2.

Theorem 3. Assume that a nodegenerate linear recurrence sequence (un)n>0 is a
divisibility sequence. If h0 = 0 in the representation (2), then

Nb,u(x) � x
log3 x√
log x

.

Proof. We let again x be large and we now set

(12) w = exp
(√

log2 x
)
, y = x1/(k+2), z = exp

(
12

√
log2 x log3 x

)
.

We redefine the sets of primes P,Q,R as well as the sets of integers E ,N as in the
proof of Theorem 2 but with the current choice of parameters w, y and z. Since
we still have that

z →∞ and z−1/6 log w(log2 x)
2 = 1,

as x→∞, the bound (7) holds for our new choice of parameters as well.
To estimate Mb,u(x, p), we note that congruence (9) now becomes

(13) upm ≡ 1 (mod qp)

Note also that that un = vn, for n = 1, 2, . . ., because h0 = 0.
We now apply the bound of Lemma 1 to estimate the number of solutions of

the congruence (13) with the linear recurrence sequence (unp − 1)n>0, whose roots
are now αp

1, . . . , α
p
k and 1. We note that if αp

1, . . . , α
p
k are not roots of unity, then

Lemma 1 applies directly. Otherwise, if one of them is a root of unity ρ then all
its conjugates must also be among αp

1, . . . , α
p
k. However, since there are no roots

of unity among αi/αj for 1 6 i < j 6 m, then ρ = ±1. Thus, unp = wn + Aρn

where (wn)n>0 is a linear recurrence sequence which has no roots of unity among
it characteristic roots and their ratios. Thus, (u2np − 1)n>0 and (u(2n+1)p − 1)n>0

are nondegenerate linear recurrence sequences to which Lemma 1 applies.
Therefore,

Mb,u(x, p) � x

p log qp
+ 1 � x

p log qp
.

Once again, recalling estimate (7), we obtain

Nb,u(x) 6 #E +
∑
p∈P

Mb,u(x, p) � x
log z
log y

+ x
∑
p∈P

1
p log qp

� x
log z
log y

+
x

logw

∑
p∈P

1
p
� x

(
log z
log y

+
log2 y

logw

)
.

Recalling our choice of w, y and z from (12), we obtain the desired result. �
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